Advertisement

Journal of Materials Science

, Volume 43, Issue 18, pp 6331–6336 | Cite as

Finite element analysis of deep indentation by a spherical indenter

  • Yuebin Charles Lu
  • Siva N. V. R. K. Kurapati
  • Fuqian YangEmail author
Article

Abstract

Using the finite element analysis, the deep indentation of strain-hardening elastoplastic materials by a rigid, spherical indenter has been studied. The simulation results clearly show that the ratio of the indentation load to the maximum indentation depth increases with the increase of the strain-hardening index and reaches a maximum value at the maximum indentation depth being about 10% of the indenter radius. The power law relation between the indentation load and the indentation depth for shallow indentation becomes invalid for deep indentation. However, the ratio of the plastic energy to the total mechanical work is a linear function of the ratio of the residual indentation depth to the maximum indentation depth, independent of the strain-hardening index and the indentation depth.

Keywords

Indentation Depth Energy Ratio Indentation Load Deep Indentation Elastoplastic Material 

Notes

Acknowledgement

This work is supported by National Science Foundation through the grant CMS-0508989 and Kentucky Science and Engineering Foundation.

References

  1. 1.
    Hertz H (1882) J Reine Angew Math 92:156Google Scholar
  2. 2.
  3. 3.
    Love AEH (1944) A treatise on the mathematical theory of elasticity, 4th edn. Dover, New YorkGoogle Scholar
  4. 4.
    Harding JW, Sneddon IN (1945) Proc Camb Philos Soc 41:16CrossRefGoogle Scholar
  5. 5.
    Mindlin RD, Deresiewicz H (1953) J Appl Mech Trans ASME 20:327Google Scholar
  6. 6.
    Yang FQ (2003) Mater Sci Eng A 358:226. doi: https://doi.org/10.1016/S0921-5093(03)00289-2 CrossRefGoogle Scholar
  7. 7.
  8. 8.
    Shih CW, Yang M, Li JCM (1991) J Mater Res 6:2623. doi: https://doi.org/10.1557/JMR.1991.2623 CrossRefGoogle Scholar
  9. 9.
    Montmitonnet P, Edlinger ML, Felder E (1993) J Tribol Trans ASME 115:10. doi: https://doi.org/10.1115/1.2920962 CrossRefGoogle Scholar
  10. 10.
    Sadeghipour K, Chen W, Baran G (1994) J Phys D Appl Phys 27:1300. doi: https://doi.org/10.1088/0022-3727/27/6/030 CrossRefGoogle Scholar
  11. 11.
    Shu JY, Fleck NA (1998) Int J Solids Struct 35:1363. doi: https://doi.org/10.1016/S0020-7683(97)00112-1 CrossRefGoogle Scholar
  12. 12.
    Taljat B, Zacharia T, Kosel F (1998) Int J Solids Struct 35:4411. doi: https://doi.org/10.1016/S0020-7683(97)00249-7 CrossRefGoogle Scholar
  13. 13.
  14. 14.
    Yang FQ, Li JCM (1995) Mater Sci Eng A 201:50. doi: https://doi.org/10.1016/0921-5093(95)09763-5 CrossRefGoogle Scholar
  15. 15.
    Yang FQ, Saran A (2006) J Mater Sci Lett 41:6077CrossRefGoogle Scholar
  16. 16.
    Ni WY, Chen YT, Cheng CM, Grummon DS (2004) J Mater Res 19:149. doi: https://doi.org/10.1557/jmr.2004.19.1.149 CrossRefGoogle Scholar
  17. 17.
    Dieter GE (1988) Mechanical metallurgy. McGraw Hill, New YorkGoogle Scholar
  18. 18.
    Cheng YT, Li ZY, Cheng CM (2002) Philos Mag A 82:1821CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Yuebin Charles Lu
    • 1
  • Siva N. V. R. K. Kurapati
    • 1
  • Fuqian Yang
    • 2
    Email author
  1. 1.Department of Mechanical EngineeringUniversity of KentuckyLexingtonUSA
  2. 2.Department of Chemical and Materials EngineeringUniversity of KentuckyLexingtonUSA

Personalised recommendations