Journal of Materials Science

, Volume 43, Issue 18, pp 6132–6138 | Cite as

Structures, thermal stability, and crystalline properties of polyamide6/organic-modified Fe-montmorillonite composite nanofibers by electrospinning

  • Yibing Cai
  • Qi Li
  • Qufu WeiEmail author
  • Yibang Wu
  • Lei Song
  • Yuan Hu


In the present work, Fe-montmorillonite (Fe-MMT) was synthesized by hydrothermal method, and then was modified by cetyltrimethyl ammonium bromide (CTAB). The polyamide6 (PA6)/organic-modified Fe-montmorillonite (Fe-OMT) composite nanofibers were prepared by facile compounding and electrospinning. Fe-OMT was first dispersed in N, N-dimethyl formamide and then compounded with PA6 which was dissolved in formic acid. The composite solutions were electrospun to form PA6/Fe-OMT composite nanofibers. The structure, morphology, thermal stability, and crystalline properties of the composite nanofibers were characterized by Fourier transfer infrared (FTIR) spectra, Energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), High-resolution electron microscopy (HREM), Scanning electron microscopy (SEM), and Thermogravimetric analyses (TGA), respectively. It was found that the silicate clay layers were well exfoliated within the composite nanofibers and were oriented along the fiber axis. The SEM images indicated that the loading of Fe-OMT decreased the diameters of composite nanofibers. TGA analyses revealed that the thermal stability was notably improved in the presence of silicate clay. It was also observed from wide-angle XRD analyses that the presence of nanoclays improved the γ-form crystals and induced the formations of α-form crystals of the PA6, attributed to effective nucleating effects of silicate clay platelets.


Silicate Clay Composite Nanofibers Electrospun Nanofibers HREM Image Silicate Clay Layer 



The work was financially supported by the Program for New Century Excellent Talents in University (No. NCET-06-0485), the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20060295005), Program for Innovative Team of Jiangnan University (PIRTJiangnan), and Program of Jiangnan University (No. 206000-21050737).


  1. 1.
    Shonaike GO, Advani SG (2003) Advanced polymeric materials: structure property relationships. C.R.C. Press, Boca RatonGoogle Scholar
  2. 2.
    Kim GM, Michler GH, Ania F, Balta Calleja FJ (2007) Polymer 48:4814. doi: CrossRefGoogle Scholar
  3. 3.
    Zhu J, Morgan AB, Lamelas FJ, Wilkie CA (2001) Chem Mater 13:3774. doi: CrossRefGoogle Scholar
  4. 4.
    Vaia RA, Ishii H, Giannelis EP (1993) Chem Mater 5:1694. doi: CrossRefGoogle Scholar
  5. 5.
    Fong H, Liu WD, Wang CS, Vaia RA (2002) Polymer 43:775. doi: CrossRefGoogle Scholar
  6. 6.
    Li L, Bellan LM, Craighead HG, Frey MW (2006) Polymer 47:6208. doi: CrossRefGoogle Scholar
  7. 7.
    Yoon KH, Polk MB, Min BG, Schiraldi DA (2004) Polym Int 53:2072. doi: CrossRefGoogle Scholar
  8. 8.
    Wang M, Hsieh AJ, Rutledge GC (2005) Polymer 46:3407. doi: CrossRefGoogle Scholar
  9. 9.
    Ji Y, Li BQ, Ge SR, Sokolov JC, Rafailovich MH (2006) Langmuir 22:1321. doi: CrossRefGoogle Scholar
  10. 10.
    Hong JH, Jeong EH, Lee HS, Baik DH, Seo SW, Youk JH (2005) J Polym Sci Polym Phys 43:3171. doi: CrossRefGoogle Scholar
  11. 11.
    Lee YH, Lee JH, An IG, Kim C, Lee DS, Lee YK et al (2005) Biomaterials 26:3165. doi: CrossRefGoogle Scholar
  12. 12.
    Liu J, Hu Y, Wang SF, Song L, Chen ZY, Fan WC (2004) Colloid Polym Sci 282:291. doi: CrossRefGoogle Scholar
  13. 13.
    Nagase T, Iwasaka T, Ebina T, Hayashi H, Onodera Y, Dutta NC (1999) Chem Lett 4:303. doi: CrossRefGoogle Scholar
  14. 14.
    Kong QH, Hu Y, Lu HD, Chen ZY, Fan WC (2005) J Mater Sci 40:4505. doi: CrossRefGoogle Scholar
  15. 15.
    Chen GM, Shen DY, Feng M, Yang MS (2004) Macromol Rapid Commun 25:1121. doi: CrossRefGoogle Scholar
  16. 16.
    Zong XH, Kim K, Fang DF, Ran SF, Hsiao BS, Chu B (2002) Polymer 43:4403. doi: CrossRefGoogle Scholar
  17. 17.
    Son WK, Youk JH, Lee TS, Park WH (2004) Polymer 45:2959. doi: CrossRefGoogle Scholar
  18. 18.
    Choi JS, Lee SW, Jeong L, Bae SH, Min BC, Youk JH et al (2004) Int J Biol Macromol 34:249. doi: CrossRefGoogle Scholar
  19. 19.
    Xie W, Gao ZM, Pan WP, Vaia R, Hunter DL, Singh A (2000) Polym Mater Sci Eng 83:284Google Scholar
  20. 20.
    Xie W, Gao ZM, Pan WP, Hunter D, Singh A, Vaia R (2001) Chem Mater 13:2979. doi: CrossRefGoogle Scholar
  21. 21.
    Xie W, Xie RC, Pan WP, Hunter D, Koene B, Tan LS et al (2002) Chem Mater 14:4837. doi: CrossRefGoogle Scholar
  22. 22.
    Zhao CG, Qin HL, Gong FL, Feng M, Zhang SM, Yang MS (2005) Polym Degrad Stab 87:183. doi: CrossRefGoogle Scholar
  23. 23.
    Dunn P, Sansom GF (1969) J Appl Polym Sci 13:1657. doi: CrossRefGoogle Scholar
  24. 24.
    Zhu J, Uhl FM, Morgan AB, Wilkie CA (2001) Chem Mater 13:4649. doi: CrossRefGoogle Scholar
  25. 25.
    Gilman JW, Jackson CL, Morgan AB, Harris R, Manias E, Giannelis EP (2000) Chem Mater 12:1866. doi: CrossRefGoogle Scholar
  26. 26.
    Giza E, Ito H, Kikutani T, Okui N (2000) J Macromol Sci B 39:545. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Yibing Cai
    • 1
    • 2
  • Qi Li
    • 1
  • Qufu Wei
    • 1
    Email author
  • Yibang Wu
    • 1
  • Lei Song
    • 2
  • Yuan Hu
    • 2
  1. 1.Key Laboratory of Eco-Textiles, Ministry of EducationJiangnan UniversityWuxiPeople’s Republic of China
  2. 2.State Key Laboratory of Fire ScienceUniversity of Science and Technology of ChinaHefeiPeople’s Republic of China

Personalised recommendations