Advertisement

Journal of Materials Science

, Volume 43, Issue 19, pp 6562–6566 | Cite as

Relative strengths of phosphoric acid-reacted and alkali-reacted metakaolin materials

  • Dan S. PereraEmail author
  • John V. Hanna
  • Joel Davis
  • Mark G. Blackford
  • Bruno A. Latella
  • Yosuke Sasaki
  • Eric R. Vance
Letter

The use of binders such as phosphoric acid to consolidate aluminosilicates to form refractory products has been reported since the 1940s [1]. Another class of materials formed by reacting concentrated alkaline silicate solutions with metakaolin (MK) has been termed geopolymers by Davidovits [2]. MK is made by heating (~750 °C) of kaolin to render it X-ray amorphous and thus more reactive. In a geopolymer, the aluminosilicate is composed of cross-linked AlO4 and SiO4 tetrahedra, charge balanced with Na+ or K+ ions. It was shown by Cao et al. [3] that PO43− can be incorporated in the geopolymer structure. Derrien et al. [4] added calcium phosphates to geopolymers, but they did not show whether the phosphate was part of the geopolymer structure. MacKenzie et al. [5] showed that the P occupied tetrahedral sites in the geopolymer with a different chemical shift from that of the aluminium phosphate reactants. Cao et al. [3] made nine compositions with Si/P molar ratios of 0.13–0.63 by...

Keywords

Geopolymer Open Porosity Silicate Solution Sodium Silicate Solution Aluminium Phosphate 

Notes

Acknowledgements

We thank Melody Carter for help with data presentation for the NMR work. We acknowledge the partial backing of the Centre for Sustainable Resource Processing, which is established and supported under the Australian Government’s Cooperative Research Centres Program.

References

  1. 1.
    Norton FH (1968) Refractories. Mc Graw-Hill, New YorkGoogle Scholar
  2. 2.
    Davidovits J (1991) J Therm Anal 37:1633. doi: https://doi.org/10.1007/BF01912193 CrossRefGoogle Scholar
  3. 3.
    Cao D, Su D, Lu B, Yang Y (2005) J Chin Ceram Soc 33(11):1385Google Scholar
  4. 4.
    Derrien AC, Odadeses H, Sangleboeuf JC, Briard P, Lucas-Girot A (2004) J Therm Anal Calorim 75:937. doi: https://doi.org/10.1023/B:JTAN.0000027187.14921.86 CrossRefGoogle Scholar
  5. 5.
    Mackenzie KJD, Brew DRM, Fletcher RA, Nicholson CL, Vagana R, Schmucker M (2005) In: Davidovits J (ed) Geopolymer, green chemistry and sustainable development solutions, geopolymer 2005. Institut Geopolymere, Saint-Quentin, p 41Google Scholar
  6. 6.
    Perera DS, Vance ER, Zhang Y, Zhang Z, Davis J, Yee P (2005) In: Davidovits J (ed) Geopolymer, green chemistry and sustainable development solutions, geopolymer 2005. Institut Geopolymere, Saint-Quentin, p 57Google Scholar
  7. 7.
    Blackford MG, Hanna JV, Pike KJ, Vance ER, Perera DS (2007) J Am Ceram Soc 90:1193. doi: https://doi.org/10.1111/j.1551-2916.2007.01532.x CrossRefGoogle Scholar
  8. 8.
    Rowles M, O’Connor B (2003) J Mater Chem 13:1161. doi: https://doi.org/10.1039/b212629j CrossRefGoogle Scholar
  9. 9.
    Duxson P, Mallicoat SW, Lukey GC, Kriven WM, van Deventer JSJ (2005) Ceram Trans 165:71Google Scholar
  10. 10.
    Kriven WM, Bell JL, Gordon M (2005) Ceram Trans 153:227Google Scholar
  11. 11.
    Schmucker M, MacKenzie KJD (2005) Interceram 31:433. doi: https://doi.org/10.1016/j.ceramint.2004.06.006 Google Scholar
  12. 12.
    Subaer , van Riessen A, O’Connor BH, Buckley CE (2002) J Aust Ceram Soc 38:83Google Scholar
  13. 13.
    Perera DS, Cashion JD, Blackford MG, Zhang Z, Vance ER (2007) J Eur Ceram Soc 27:2697. doi: https://doi.org/10.1016/j.jeurceramsoc.2006.10.006 CrossRefGoogle Scholar
  14. 14.
    Kriven WM, Bell JL, Gordon M, Wen G (2005) In: Proceedings of the GGC 2005 (International Workshop on Geopolymers and Geopolymer Concrete), September, 28–29, 2005, Perth, Australia. CD ROM, Paper 2Google Scholar
  15. 15.
    Latella BA, Perera DS, Durce D, Mehrtens EG, Davis J (2008) J Mater Sci 43:2849. doi: https://doi.org/10.1007/s10853-007-2412-1 CrossRefGoogle Scholar
  16. 16.
    John CS, Alma NCM, Hays GR (1983) Appl Catal 6:341CrossRefGoogle Scholar
  17. 17.
    Smith ME (1993) Appl Magn Reson 4:1CrossRefGoogle Scholar
  18. 18.
    Bradley SM, Hanna JV (1993) J Chem Soc Chem Comm 1249Google Scholar
  19. 19.
    Bradley SM, Hanna JV (1993) J Am Chem Soc 116:7771CrossRefGoogle Scholar
  20. 20.
    Paglia G, Buckley CE, Rohl AL, Hunter BA, Hart RD, Hanna JV, Byrne LT (2003) Phys Rev B 68:144110CrossRefGoogle Scholar
  21. 21.
    Rowles MR, Hanna JV, Pike KJ, Smith ME, O’Connor BH (2007) Appl Magn Reson 32:663CrossRefGoogle Scholar
  22. 22.
    Kohn SC, Dupree R, Mortuza MG, Henderson CMB (1991) Am Miner 76:309Google Scholar
  23. 23.
    Kunath-Fanfrei G, Losso P, Schneider H, Steuernagel S, Jäger C (1992) Solid State Nucl Magn Reson 1:262Google Scholar
  24. 24.
    Kunath-Fanfrei G, Bastow TJ, Hall JS, Jäger C, Smith ME (1995) J Phys Chem 99:15138CrossRefGoogle Scholar
  25. 25.
    Duxson P, Mallicoat SW, Lukey GC, Kriven WM, van Deventer JSJ (2007) Colloids Surf A 292:8CrossRefGoogle Scholar
  26. 26.
    Ford WF (1964) Institute of ceramics textbook series 3: drying. Livesey Ltd., UK, p 42Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Dan S. Perera
    • 1
    Email author
  • John V. Hanna
    • 1
  • Joel Davis
    • 1
  • Mark G. Blackford
    • 1
  • Bruno A. Latella
    • 1
  • Yosuke Sasaki
    • 1
  • Eric R. Vance
    • 1
  1. 1.Australian Nuclear Science and Technology OrganisationMenaiAustralia

Personalised recommendations