Advertisement

Journal of Materials Science

, Volume 43, Issue 18, pp 6337–6343 | Cite as

Effect of gradient composite structure in cofired bilayer composites of Pb(Zr0.56Ti0.44)O3–Ni0.6Zn0.2Cu0.2Fe2O4 system on magnetoelectric coefficient

  • Rashed Adnan IslamEmail author
  • Chuan-bing Rong
  • J. P. Liu
  • Shashank Priya
Article

Abstract

This study investigates the ferroelectric, ferromagnetic, and magnetoelectric properties of the cofired bilayer composites consisting of piezoelectric phase with formulation 0.9 Pb(Zr0.56Ti0.44)O3–0.1 Pb[(Zn0.8/3Ni0.2/3)Nb2/3] + 2 (mol%) MnO2 and 40 mol% ferrite phase with formulation Ni0.6Zn0.2Cu0.2Fe2O4 (NCZF). A bulk composite of the same composition was also synthesized for comparison. Scanning electron microscope (SEM) investigation using quadrant back scattering detector (QBSD) shows migration of ferrite phases through the interface and energy dispersive X-ray spectroscopy (EDX) analysis with X-ray mapping clarifying these as Cu-rich phases. Improved piezoelectric (d33 ~ 80 pC/N), ferroelectric (polarization of 60 μC/cm2 and 0.1% strain), higher magnetization (25 emu/g) and lower coercive field (2.8 Oe) were recorded for bilayer composite. The results indicate that the gradient bilayer composites with tailored composition such that the fraction of the secondary phase is higher may lead to better magnetoelectric material.

Keywords

Ferrite Liquid Phase Sinter CuFe2O4 Physical Property Measurement System Gradient Structure 

Notes

Acknowledgements

The authors thank the Department of Energy and Army Research Office for supporting this research. The author (S.P.) also thanks D. Viehland for helpful discussion.

References

  1. 1.
    Wang J, Zheng H, Lofland SE, Ma Z, Ardabili LM, Zhao T et al (2004) Science 303:661. doi: https://doi.org/10.1126/science.1094207 CrossRefGoogle Scholar
  2. 2.
    Ederer C, Spaldin N (2004) Nat Mater 3:849. doi: https://doi.org/10.1038/nmat1265 CrossRefGoogle Scholar
  3. 3.
    Eerenstein W, Mathur ND, Scott JF (2006) Nature 442:759. doi: https://doi.org/10.1038/nature05023 CrossRefGoogle Scholar
  4. 4.
    Hur N, Park S, Sharma PA, Ahn JS, Guha S, Cheong SW (2004) Nature 429:392. doi: https://doi.org/10.1038/nature02572 CrossRefGoogle Scholar
  5. 5.
    Ryu J, Priya S, Uchino K, Viehland D, Kim H (2002) J Korean Ceram Soc 39:813CrossRefGoogle Scholar
  6. 6.
    Ryu J, Priya S, Uchino K, Kim H (2002) J Electroceram 8:107. doi: https://doi.org/10.1023/A:1020599728432 CrossRefGoogle Scholar
  7. 7.
    Srinivasan G, Rasmussen E, Levin B, Hayes R (2002) Phys Rev B 65:134402. doi: https://doi.org/10.1103/PhysRevB.65.134402 CrossRefGoogle Scholar
  8. 8.
    Dong SX, Zhai J, Li JF, Viehland D (2006) J Appl Phys 88:082907Google Scholar
  9. 9.
    Dong SX, Cheng J, Li JF, Viehland D (2003) Appl Phys Lett 83:4812. doi: https://doi.org/10.1063/1.1631756 CrossRefGoogle Scholar
  10. 10.
    Astrov DN, Al’shin BI, Zhorin RV, Drobyshev LA (1968) Sov Phys JETP 28:1123Google Scholar
  11. 11.
    Odell TH (1965) Electron Power 11:266CrossRefGoogle Scholar
  12. 12.
    Boomgaard JVD, Born RAJ (1978) J Mater Sci 13:1538. doi: https://doi.org/10.1007/BF00553210 CrossRefGoogle Scholar
  13. 13.
    Boomgaard JVD, Terrell DR, Born RAJ, Giller HFJI (1974) J Mater Sci 9:1705. doi: https://doi.org/10.1007/BF00540770 CrossRefGoogle Scholar
  14. 14.
    Kobayashi KI, Morinaga H, Araki T (1992) J Magn Magn Mater 104–107:413. doi: https://doi.org/10.1016/0304-8853(92)90857-K CrossRefGoogle Scholar
  15. 15.
    Rahman IZ, Ahmed TT, Powell L (2003) J Met Nano Mater 17:9Google Scholar
  16. 16.
    Kim WC, Kim SJ (2001) IEEE Trans Magn 37:2362. doi: https://doi.org/10.1109/20.951173 CrossRefGoogle Scholar
  17. 17.
    Islam RA, Priya S (2006) J Am Ceram Soc 89(10):3147. doi: https://doi.org/10.1111/j.1551-2916.2006.01205.x CrossRefGoogle Scholar
  18. 18.
    Cancarevic M, Zinkavich M, Aldinger F (2005) Mater Sci Forum 494:67CrossRefGoogle Scholar
  19. 19.
    Ringgaard E, Nielsen ER, Wolny WW (2001) In: Proceedings of 2000 12th IEEE internationl symposium on application of ferroelectrics, vol 1, p 451Google Scholar
  20. 20.
    Cerovic D, Momcilovic I, Kiss SJ (1972) J Mater Sci 7:735. doi: https://doi.org/10.1007/BF00549901 CrossRefGoogle Scholar
  21. 21.
    Shrotri JJ, Kulkarni SD, Despande CE (1999) J Mater Chem Phys 59:1. doi: https://doi.org/10.1016/S0254-0584(99)00019-X CrossRefGoogle Scholar
  22. 22.
    Ahmed TT, Rahman IZ, Rahman MA (2004) J Mater Process Technol 153–154:797CrossRefGoogle Scholar
  23. 23.
    Okamura T, Kojima Y (1952) Phys Rev 86(6):1040. doi: https://doi.org/10.1103/PhysRev.86.1040.2 CrossRefGoogle Scholar
  24. 24.
    Newnham RE (1989) Rep Prog Phys 52:123. doi: https://doi.org/10.1088/0034-4885/52/2/001 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Rashed Adnan Islam
    • 1
    Email author
  • Chuan-bing Rong
    • 2
  • J. P. Liu
    • 2
  • Shashank Priya
    • 3
  1. 1.Material Science and EngineeringUniversity of Texas at ArlingtonArlingtonUSA
  2. 2.Department of PhysicsUniversity of Texas at ArlingtonArlingtonUSA
  3. 3.Material Science and EngineeringVirginia TechBlacksburgUSA

Personalised recommendations