Advertisement

Journal of Materials Science

, Volume 43, Issue 18, pp 6260–6266 | Cite as

Achieving high strain rate superplasticity via severe plastic deformation processing

  • Chih-Fu Yang
  • Jiun-Hung Pan
  • Ming-Chieh Chuang
Article

Abstract

In this study, a thermomechanical process consisting of general precipitation and severe plastic deformation through equal channel angular extrusion (ECAE) was applied to a Zn-22 wt.% Al alloy to produce a microduplex structure for high strain rate (HSR) superplasticity studies. Microstructures, hardness, and superplastic properties of the Zn–Al alloy were studied by using differential scanning calorimetry (DSC), scanning electron microscopy (SEM), recordable hydraulic press, and a tensile test with a hot stage. A work-softening phenomenon due to the occurrence of a grain boundary-sensitive dynamic recrystallization (DRX) was observed during the ECAE processing of the Zn–Al alloy at the extrusion temperatures investigated from −10 °C to 50 °C. An important discovery regarding the grain boundary-sensitive DRV was realized in this study such that through a progressive work-softening process the Zn–Al alloy will eventually exhibit HSR superplastic properties.

Keywords

High Strain Rate Differential Scanning Calorimeter Measurement Equal Channel Angular Extrusion Extrusion Load Equal Channel Angular Extrusion Processing 

Notes

Acknowledgement

The authors gratefully acknowledge the financial support for this research by the National Science Council of R.O.C. under contract NSC 95-2221-E-036-029.

References

  1. 1.
    Casolco SR, Parra ML, Torres-Villasenor G (2006) J Mater Process Technol 174:389. doi: https://doi.org/10.1016/j.jmatprotec.2005.02.271 CrossRefGoogle Scholar
  2. 2.
    Kaibyshev R, Avtokratova E, Apollonov A et al (2006) Scr Mater 54:2119. doi: https://doi.org/10.1016/j.scriptamat.2006.03.020 CrossRefGoogle Scholar
  3. 3.
    Nikulin I, Kaibyshev R, Sakai T (2005) Mater Sci Eng A 407:62. doi: https://doi.org/10.1016/j.msea.2005.06.014 CrossRefGoogle Scholar
  4. 4.
    Watanabe H, Ishikawa K, Mukai T (2007) Key Eng Mater 340–341:107CrossRefGoogle Scholar
  5. 5.
    Lee CJ, Huang JC (2006) Mater Trans 47:2773. doi: https://doi.org/10.2320/matertrans.47.2773 CrossRefGoogle Scholar
  6. 6.
    Beyerlein IJ, Alexander DJ, Tome CN (2007) J Mater Sci 42:1733. doi: https://doi.org/10.1007/s10853-006-0906-x CrossRefGoogle Scholar
  7. 7.
    Saravanan M, Pillai RM, Pai BC et al (2006) Bull Mater Sci 29:679Google Scholar
  8. 8.
    Kumar P, Xu C, Langdon TG (2006) Mater Sci Eng A 429:324. doi: https://doi.org/10.1016/j.msea.2006.05.044 CrossRefGoogle Scholar
  9. 9.
    Tanaka T, Watanabe H, Kohzu M et al (2004) Mater Sci Forum 447–448:489CrossRefGoogle Scholar
  10. 10.
    Huang WH, Yu CY, Kao PW et al (2004) Mater Sci Eng A 366:221. doi: https://doi.org/10.1016/j.msea.2003.08.033 CrossRefGoogle Scholar
  11. 11.
    Staszewski M, Wesolowski J, Morawiec H (1996) Z Metallk 87:144Google Scholar
  12. 12.
    Purcek G (2005) J Mater Process Technol 169:242. doi: https://doi.org/10.1016/j.jmatprotec.2005.03.012 CrossRefGoogle Scholar
  13. 13.
    Purcek G, Altan BS, Miskioglu I et al (2004) J Mater Process Technol 148:279. doi: https://doi.org/10.1016/j.jmatprotec.2004.02.010 CrossRefGoogle Scholar
  14. 14.
    Komura S, Furukawa M, Horita Z et al (2001) Mater Sci Eng A 297:111. doi: https://doi.org/10.1016/S0921-5093(00)01255-7 CrossRefGoogle Scholar
  15. 15.
    Valiev RZ, Alexandrov IV, Zhu YT et al (2002) J Mater Res 17:5. doi: https://doi.org/10.1557/JMR.2002.0002 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Chih-Fu Yang
    • 1
  • Jiun-Hung Pan
    • 1
  • Ming-Chieh Chuang
    • 1
  1. 1.Department of Materials EngineeringTatung UniversityTaipeiTaiwan, ROC

Personalised recommendations