Advertisement

Journal of Materials Science

, Volume 43, Issue 18, pp 6267–6271 | Cite as

Crystal structure and properties of BaTiO3–(Bi0.5Na0.5)TiO3 ceramic system

  • Lanfang Gao
  • Yanqiu HuangEmail author
  • Liang Liu
  • Tiantian Liu
  • Chunfeng Liu
  • Fei Zhou
  • Xinwu Wan
Article

Abstract

(1 − x)BaTiO3x(Bi0.5Na0.5)TiO3 (x ranged from 0.01 to 0.96) ceramics were fabricated by the conventional ceramic technique. The crystal structure, as well as dielectric and piezoelectric properties of the ceramics were studied. All the ceramics formed single-phase solid solutions with perovskite structure after sintering in air at 1150–1250 °C for 2–4 h. The crystal structure and microstructure varied gradually with the increase of (Bi0.5Na0.5)TiO3 (BNT) content. The Curie temperature, Tc, shifted monotonously to high temperature as BNT increased. The ceramics with 20–90 mol% BNT had relatively low and stable dielectric loss characteristics. The piezoelectric constant, d33, enhanced with the increase of BNT content through a maximum value in a composition of 93 mol% BNT and then tended to decrease. The maximum value, 148 pC/N, of piezoelectric constant d33 together with the electromechanical coupling factors, kt, 19.8% and kp, 15.8%, were obtained when BNT was 93 mol%.

Keywords

BaTiO3 Piezoelectric Property Piezoelectric Ceramic Morphotropic Phase Boundary Diffuse Phase Transition 

Notes

Acknowledgements

This work was jointly supported by Key Laboratory of Ferroelectric and Piezoelectric Materials and Devices of Hubei Province, Hubei University, China and the Research and Innovation Foundation of graduate student of China University of Geosciences, China (Grant No. CUGYJS0703). The authors are grateful to Professor Suxin Zhang, State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, for SEM observations, and Mr. Jishun Yu for XRD analysis and Ms. Michun Yang for assistance in performing the dielectric and piezoelectric property measurements.

References

  1. 1.
    Ravez J, Simon A (2000) Phys Stat Sol A 178:793. doi :10.1002/1521-396X(200004)178:2<793::AID-PSSA793>3.0.CO;2-XCrossRefGoogle Scholar
  2. 2.
    Farhi R, El Marssi M, Simon A, Ravez J (1999) Eur Phys J B 9:599. doi: https://doi.org/10.1007/s100510050803 CrossRefGoogle Scholar
  3. 3.
    Yu Z, Ang C, Guo R (2002) Mater Lett 61:326. doi: https://doi.org/10.1016/j.matlet.2006.04.098 CrossRefGoogle Scholar
  4. 4.
    Peng C, Li JF, Gong W (2005) Mater Lett 59:1576. doi: https://doi.org/10.1016/j.matlet.2005.01.026 CrossRefGoogle Scholar
  5. 5.
    Nagata H, Takenaka T (2001) J Euro Ceram Soc 21:1299. doi: https://doi.org/10.1016/S0955-2219(01)00005-X CrossRefGoogle Scholar
  6. 6.
    Villegas M, Caballero AC, Moure C, Duran P, Fernandez JF (1999) J Am Ceram Soc 82(9):2411CrossRefGoogle Scholar
  7. 7.
    Gelfuso MV, Thomazini D, Eiras JA (1999) J Am Ceram Soc 82:2368CrossRefGoogle Scholar
  8. 8.
    Megriche A, Lebrun L, Troccaz M (1999) Sens Actuators A 78:88. doi: https://doi.org/10.1016/S0924-4247(99)00223-X CrossRefGoogle Scholar
  9. 9.
    Guo Y, Kakimoto K, Ohsato H (2004) Solid State Commun 129:279. doi: https://doi.org/10.1016/j.ssc.2003.10.026 CrossRefGoogle Scholar
  10. 10.
    Chang Y, Yang Z, Chao X (2007) Mater Lett 61:785. doi: https://doi.org/10.1016/j.matlet.2006.05.065 CrossRefGoogle Scholar
  11. 11.
    Takenaka T, Maruyama K, Sakata K (1991) Jpn J Appl Phys 30:2236. doi: https://doi.org/10.1143/JJAP.30.2236 CrossRefGoogle Scholar
  12. 12.
    Takenaka T, Huzumi A, Hata T, Sakata K (1993) Silic Ind 7:136Google Scholar
  13. 13.
    Hosono Y, Harada K, Yamashita Y (2001) Jpn J Appl Phys 40:5722. doi: https://doi.org/10.1143/JJAP.40.5722 CrossRefGoogle Scholar
  14. 14.
    Chu BJ, Chen DR, Li GR, Yin QR (2002) J Eur Ceram Soc 22:2115. doi: https://doi.org/10.1016/S0955-2219(02)00027-4 CrossRefGoogle Scholar
  15. 15.
    Wang XX, Chan HLW, Choy CL (2003) Solid State Commun 125:395. doi: https://doi.org/10.1016/S0038-1098(02)00816-5 CrossRefGoogle Scholar
  16. 16.
    Li HD, Feng CD, Yao WL (2004) Mater Lett 58:1194. doi: https://doi.org/10.1016/j.matlet.2003.08.034 CrossRefGoogle Scholar
  17. 17.
    Gomah-Pettry JR, Saïd S, Marchet P, Mercurio JP (2004) J Eur Ceram Soc 24:1165. doi: https://doi.org/10.1016/S0955-2219(03)00473-4 CrossRefGoogle Scholar
  18. 18.
    Takeda H, Aoto W, Shiosaki T (2005) Appl Phys Lett 87:102104. doi: https://doi.org/10.1063/1.2042551 CrossRefGoogle Scholar
  19. 19.
    Xu Q, Chen S, Chen W (2004) J Alloy Comp 381:221. doi: https://doi.org/10.1016/j.jallcom.2004.02.057 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Lanfang Gao
    • 1
  • Yanqiu Huang
    • 1
    • 2
    Email author
  • Liang Liu
    • 1
  • Tiantian Liu
    • 1
  • Chunfeng Liu
    • 1
  • Fei Zhou
    • 1
  • Xinwu Wan
    • 1
  1. 1.Faculty of Materials Science and Chemical EngineeringChina University of GeosciencesWuhanPeople’s Republic of China
  2. 2.Key Laboratory of Ferroelectric and Piezoelectric Materials and Devices of Hubei ProvinceHubei UniversityWuhanPeople’s Republic of China

Personalised recommendations