Journal of Materials Science

, Volume 43, Issue 18, pp 6278–6284 | Cite as

Mesoporous niobium oxides with tailored pore structures

  • Li Yuan
  • Vadim V. Guliants


Novel thermally stable and 2D mesoporous niobia phases were prepared by the evaporation induced self-assembly (EISA) with high surface areas (up to 211 m2/g). The pore size of these novel mesoporous niobium oxides was tuned in a wide range from 4.6 to 21 nm by increasing the aging temperature, aging time, and humidity of aging atmosphere. Mixtures of two nonionic surfactants, Pluronic P123 and Brij 35, were for the first time used to tune the pore structure of resultant mesoporous niobia phases which showed that the mesopore shape may be switched from cylindrical to ink-bottle. The niobia mesostructures obtained in this study were thermally stable up to 500 °C. These novel mesoporous niobium oxides with tunable pore sizes are highly promising as catalytic supports and a major component in the synthesis of porous Nb-containing mixed metal oxides, such as MoVTeNbOx catalysts for selective (amm)oxidation of propane.


Niobium Oxide Bismuth Molybdate Tunable Pore Size Aging Atmosphere Bismuth Molybdate Catalyst 



This research was supported by the National Science Foundation under NSF CAREER Award CTS#0238962 to Dr. Vadim V. Guliants.


  1. 1.
    (a) Tanabe K (1990) Catal Today 8:1. doi:; (b) Japan Patent Kokai (1987) 62-27 043, to Nippon Shokubai Co. Ltd; (c) US Patent 4,665,200 (1987), to Nippon Shokubai Co. Ltd; (d) US Patent 4,781,862 (1988), to Montvale Process Co. Inc.CrossRefGoogle Scholar
  2. 2.
    Desponds O, Keiski RL, Somorjai GA (1993) Catal Lett 19:17CrossRefGoogle Scholar
  3. 3.
    Jehng JM, Turek AM, Wachs IE (1992) Appl Catal 83:179. doi: CrossRefGoogle Scholar
  4. 4.
    Deo G, Wachs IE (1991) J Catal 129:307. doi: CrossRefGoogle Scholar
  5. 5.
    Wachs IE, Jehng JM, Deo G, Hu H, Arora N (1996) Catal Today 28:199. doi: CrossRefGoogle Scholar
  6. 6.
    Smits RHH, Seshan K, Leemreize H, Ross JRH (1993) Catal Today 16:513CrossRefGoogle Scholar
  7. 7.
    Yuan L, Bhatt S, Beaucage G, Guliants VV, Mamedov S, Soman RS (2005) J Phys Chem B 109:23250. doi: CrossRefGoogle Scholar
  8. 8.
    Evans OR, Bell AT, Tilley TD (2004) J Catal 226:292. doi: CrossRefGoogle Scholar
  9. 9.
    Sun G, Xu A, He Y, Yang M, Du H, Sun C (2008) J Hazard Mater 156:335. doi: CrossRefGoogle Scholar
  10. 10.
    Antonelli DM, Ying JY (1996) Angew Chem 108:461. doi: CrossRefGoogle Scholar
  11. 11.
    Antonelli DM, Ying JY (1996) Angew Chem Int Ed Engl 35:426. doi: CrossRefGoogle Scholar
  12. 12.
    Antonelli DM, Nakahira A, Ying JY (1996) Inorg Chem 35:3126. doi: CrossRefGoogle Scholar
  13. 13.
    Sun T, Ying JY (1998) Angew Chem Int Ed 37:664. doi:10.1002/(SICI)1521-3773(19980316)37:5<664::AID-ANIE664>3.0.CO;2-TCrossRefGoogle Scholar
  14. 14.
    Yang PD, Zhao DY, Margolese DI, Chmelka BF, Stucky GD (1999) Chem Mater 11:2813. doi: CrossRefGoogle Scholar
  15. 15.
    Lee B, Lu DL, Kondo JN, Domen K (2002) J Am Chem Soc 124:11256. doi: CrossRefGoogle Scholar
  16. 16.
    Katou T, Lu DL, Kondo JN, Domen K (2002) J Mater Chem 12:1480. doi: CrossRefGoogle Scholar
  17. 17.
    Altwasser S, Glaser R, Weitkamp J (2007) Microporous Mesoporous Mater 104:281. doi: CrossRefGoogle Scholar
  18. 18.
    Song C, Garcés JM, Sugi Y (2000) Shape-selective catalysis: chemicals synthesis and hydrocarbon processing. ACS symposium series 738, Oxford University PressGoogle Scholar
  19. 19.
    Thomas JM, Raja R (2007) Top Catal 40:3. doi: CrossRefGoogle Scholar
  20. 20.
    Levenspiel O (1999) Chemical reaction engineering, 3rd edn. Wiley, New YorkGoogle Scholar
  21. 21.
    Brinker CJ, Lu Y, Sellinger A, Fan H (1999) Adv Mater 11:579. doi:10.1002/(SICI)1521-4095(199905)11:7<579::AID-ADMA579>3.0.CO;2-RCrossRefGoogle Scholar
  22. 22.
    Barrett EP, Joyner LG, Halenda PP (1951) J Am Chem Soc 73:373. doi: CrossRefGoogle Scholar
  23. 23.
    Brunauer S, Emmett PH, Teller E (1938) J Am Chem Soc 60:309. doi: CrossRefGoogle Scholar
  24. 24.
    Huo Q, Margolese D, Stucky GD (1996) Chem Mater 8:1147CrossRefGoogle Scholar
  25. 25.
    Kruk M, Jaroniec M, Sayari A (1997) Langmuir 13:6267. doi: CrossRefGoogle Scholar
  26. 26.
    Frevel R (1955) Anal Chem 27:1329. doi: CrossRefGoogle Scholar
  27. 27.
    Zhao DY, Feng JL, Huo QS, Melosh N, Fredrickson GH, Chmelka BF et al (1998) Science 279:548. doi: CrossRefGoogle Scholar
  28. 28.
    Galarneau A (2001) Langmuir 17:8328. doi: CrossRefGoogle Scholar
  29. 29.
    Voort P, Benjelloun M, Vansant E (2002) J Phys Chem B 106:9027. doi: CrossRefGoogle Scholar
  30. 30.
    Goltner-Spickermann C (2002) Curr Opin Colloid Interface Sci 7:173. doi: CrossRefGoogle Scholar
  31. 31.
    Tian B, Liu X, Zhang Z, Tu B, Zhao DY (2002) J Solid State Chem 167:324CrossRefGoogle Scholar
  32. 32.
    Smitha S, Shajesh P, Aravind PR, Kumar SR, Pillai PK, Warrier KGK (2006) Microporous Mesoporous Mater 91:286. doi: CrossRefGoogle Scholar
  33. 33.
    Crepaldi E, Soler-Illia GJAA, Bouchara A, Grosso D, Durand D, Sanchez C (2003) Angew Chem Int Ed 42:347. doi: CrossRefGoogle Scholar
  34. 34.
    Crepaldi E, Soler-Illia GJAA, Grosso D, Cagnol F, Ribot F, Sanchez C (2003) J Am Chem Soc 125:9770. doi: CrossRefGoogle Scholar
  35. 35.
    Huo Q, Leon R, Petroff PM, Stucky GD (1995) Science 268:1324. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Chemical and Materials EngineeringUniversity of CincinnatiCincinnatiUSA

Personalised recommendations