Advertisement

Journal of Materials Science

, Volume 43, Issue 23–24, pp 7326–7330 | Cite as

Stored energy and recrystallization temperature in high purity copper after equal channel angular pressing

  • Yue Zhang
  • Jing Tao WangEmail author
  • Chang Cheng
  • Jinqiang Liu
Ultrafine-Grained Materials

Abstract

Equal channel angular pressing (ECAP) was conducted at room temperature to impose high strain into high purity copper. Differential Scanning Calorimeter (DSC) was used to estimate the stored energy from ECAP and recrystallization temperature. It was found that the stored energy increases upon ECAP processing until a peak is reached at 12 passes of ECAP, and a slight decrease in stored energy was observed at higher ECAP passes. The recrystallization temperature decreases upon the increase of the stored energy up to ~50 J/mol, and reaches a stable valve of ~210 °C. Partial annealing of an ECAP processed (8 passes) sample by heating to ~185 °C at a heating rate of 20 °C/min released the stored energy from ~55 to ~18 J/mol, without substantial change on the recrystallization temperature of the sample. A two parameters model was used to help calculate stored energy of ultrafine-grained copper after high strain level processing.

Keywords

Differential Scanning Calorimeter Equal Channel Angular Pressing Recrystallization Temperature Recrystallization Kinetic Partial Annealing 

Notes

Acknowledgement

This work was supported by the National Science Foundation of China under Grant No. 50474028.

References

  1. 1.
    Humphreys FJ, Hatherly M (2004) Recrystallization and related annealing phenomena, 2nd edn. Elsevier, UKGoogle Scholar
  2. 2.
    Liu L, Baker I (1993) Scr Metab 28:197. doi: https://doi.org/10.1016/0956-716X(93)90562-7 CrossRefGoogle Scholar
  3. 3.
    Baker I, Liu L, Mandal D (1994) Scr Metab Mater 32:167. doi: https://doi.org/10.1016/S0956-716X(99)80031-4 CrossRefGoogle Scholar
  4. 4.
    Haessner F, Hoschek G (1976) Scr Metab 10:63. doi: https://doi.org/10.1016/0036-9748(76)90329-X CrossRefGoogle Scholar
  5. 5.
    Mandal D, Baker I (1995) Scr Metab Et Mater 33:831. doi: https://doi.org/10.1016/0956-716X(95)00290-C CrossRefGoogle Scholar
  6. 6.
    Mandal D, Baker I (1996) Mater Forum 207–209:521CrossRefGoogle Scholar
  7. 7.
    Haessner F, Hosted G, Tolg G (1979) Acta Metall 27:1539. doi: https://doi.org/10.1016/0001-6160(79)90176-7 CrossRefGoogle Scholar
  8. 8.
    Schonborn K, Haessner F (1982) Z Metallk 73:739Google Scholar
  9. 9.
    Witzel W, Haessner F (1987) Z Metallk 78:316Google Scholar
  10. 10.
    Baker I, Liu L (1993) Scr Metab Et Mater 30:1167. doi: https://doi.org/10.1016/0956-716X(94)90333-6 CrossRefGoogle Scholar
  11. 11.
    Mao WM et al (1994) Recrystallization and grain growth. Publishing Company of Metallurgy Industry, BeijingGoogle Scholar
  12. 12.
    Hutchson WB (1989) Meat Sci 8:185CrossRefGoogle Scholar
  13. 13.
    Valiev RZ, Langdon TG (2006) Prog Mater Sci 51:881. doi: https://doi.org/10.1016/J.PMATSCI.2006.02.003 CrossRefGoogle Scholar
  14. 14.
    Stolyarov VV, Zhu YT, Lowe TC et al (1999) Nanostructured Mater 11:947. doi: https://doi.org/10.1016/S0965-9773(99)00384-0 CrossRefGoogle Scholar
  15. 15.
    Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103. doi: https://doi.org/10.1016/S0079-6425(99)00007-9 CrossRefGoogle Scholar
  16. 16.
    Wang JT, Wei W, Zhang Y et al (2006) In: Zhu YT, Langdon TG, Horita Z, Zehetbauer MJ, Semiatin SL, Lowe TC (eds) Ultrafine grained materials IV. (TMS) The Minerals, Metals and Materials Society, p 89Google Scholar
  17. 17.
    Wei W (2004) A dissertation of Nanjing university of science and technology, NanjingGoogle Scholar
  18. 18.
    Gubicza J, Estrin Y, Ungar T et al (2005) Mater Sci Eng A 400–401:334. doi: https://doi.org/10.1016/J.MSEA.2005.03.042 CrossRefGoogle Scholar
  19. 19.
    McElroy RZ, Szkopiak ZC (1972) Int Metab Rev 17:175CrossRefGoogle Scholar
  20. 20.
  21. 21.
    Zehetbauer M (1993) Acta Metall Mater 41:589. doi: https://doi.org/10.1016/0956-7151(93)90089-B CrossRefGoogle Scholar
  22. 22.
    Zehetbauer M, Seumer V (1993) Acta Metall Mater 41:577. doi: https://doi.org/10.1016/0956-7151(93)90088-A CrossRefGoogle Scholar
  23. 23.
    Liu Q, Hansen N (1995) Scr Mater 32:1289. doi: https://doi.org/10.1016/0956-716X(94)00019-E CrossRefGoogle Scholar
  24. 24.
    Hughes DA, Hansen N (2000) Acta Mater 48:2985. doi: https://doi.org/10.1016/S1359-6454(00)00082-3 CrossRefGoogle Scholar
  25. 25.
    Hurley PJ, Humphreys FJ (2003) Acta Mater 51:1087. doi: https://doi.org/10.1016/S1359-6454(02)00513-X CrossRefGoogle Scholar
  26. 26.
    Mandal D, Baker I (1995) Scr Metall 33:645. doi: https://doi.org/10.1016/0956-716X(95)00272-W CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Yue Zhang
    • 1
  • Jing Tao Wang
    • 1
    Email author
  • Chang Cheng
    • 1
  • Jinqiang Liu
    • 1
  1. 1.Department of Materials Science and EngineeringNanjing University of Science and TechnologyNanjingPeople’s Republic of China

Personalised recommendations