Advertisement

Journal of Materials Science

, Volume 43, Issue 17, pp 5712–5719 | Cite as

Structural transitions during aluminum leaching of NiAl3 phase in a Raney Ni–Al alloy

  • Rong WangEmail author
  • Houwen Chen
  • Zhilong Lu
  • Shaohong Qiu
  • Tsun Ko
Article

Abstract

Structural transitions during aluminum leaching of the NiAl3 phase in a Raney nickel–aluminum alloy have been investigated by X-ray diffraction, transmission electron microscopy, high-resolution transmission electron microscopy, and X-ray energy dispersive spectroscopy. We observed that NiAl3 grains cracked into crystalline nano-fragments at the initial stage of leaching. A possible mechanism for the grain fragmentation was proposed based on the crystal structure of NiAl3. We discovered that fcc nickel, the known active phase, coexisted with another active nickel phase with an orthorhombic structure in the Raney-Ni catalyst. The orthorhombic nickel phase was generated directly from its source phase, NiAl3, and further transformed to the fcc nickel phase during aluminum leaching

Keywords

Ni2Al3 Aluminum Atom Energy Dispersive Spectroscopic Source Phase NiAl3 Phase 

Notes

Acknowledgements

This study is supported partially by funding from the Chinese Institute of Petroleum Processing Research. We thank Dr. Baoning Zong for providing experimental materials for this study and Professors Enze Min, Wanzhen Lu and Drs. Baoning Zong, Xuhong Mu for fruitful and enlightening discussions.

References

  1. 1.
    Raney M (1925) US Patent 1,563,787Google Scholar
  2. 2.
    Raney M (1927) US Patent 1,628,191Google Scholar
  3. 3.
    Fasman AB, Mikhailenko SD, Maksimova NA, Ikhsanov ZhA (1983) Appl Catal 6:1. doi: https://doi.org/10.1016/0166-9834(83)80182-1 CrossRefGoogle Scholar
  4. 4.
  5. 5.
    Hu H, Xie F, Pei Y, Qiao M, Yan S, He H et al (2006) J Catal 237:143. doi: https://doi.org/10.1016/j.jcat.2005.11.001 CrossRefGoogle Scholar
  6. 6.
    Freel J, Pieters WJM, Anderson RB (1970) J Catal 16:281. doi: https://doi.org/10.1016/0021-9517(70)90224-1 CrossRefGoogle Scholar
  7. 7.
    Kordulis C, Doumain B, Daman JP, Masson J, Dallons JL, Delannay F (1985) Bull Soc Chim Belg 1:371Google Scholar
  8. 8.
    Freel J, Pieters WJM, Anderson RB (1969) J Catal 14:247. doi: https://doi.org/10.1016/0021-9517(69)90432-1 CrossRefGoogle Scholar
  9. 9.
    Lieber E, Morritz FL (1953) Adv Catal 5:417. doi: https://doi.org/10.1016/S0360-0564(08)60647-1 Google Scholar
  10. 10.
    Gros J, Hamar-Thibault S, Joud JC (1988) Surf Interface Anal 11:611. doi: https://doi.org/10.1002/sia.740111206 CrossRefGoogle Scholar
  11. 11.
    Delannay F (1986) React Solids 2:235. doi: https://doi.org/10.1016/0168-7336(86)80086-9 CrossRefGoogle Scholar
  12. 12.
    Hamar-Thibault S, Thibault J, Joud JC (1992) Z Metallk 83:258Google Scholar
  13. 13.
    Wang R, Lu Z, Ko T (2001) J Mater Sci 36:5645Google Scholar
  14. 14.
    Bakker ML, Young DJ, Wainwright MS (1988) J Mater Sci 23:3921. doi: https://doi.org/10.1007/BF01106814 CrossRefGoogle Scholar
  15. 15.
    Colin P, Hamar-Thibault S, Joud JC (1992) J Mater Sci 27:2326. doi: https://doi.org/10.1007/BF01105039 CrossRefGoogle Scholar
  16. 16.
    Devred F, Hoffer BW, Sloof WG, Kooyman PJ, van Langeveld AD, Zandbergen HW (2003) Appl Catal A 244:291. doi: https://doi.org/10.1016/S0926-860X(02)00601-4 CrossRefGoogle Scholar
  17. 17.
    Lu Z, Wang R, Ko T, Chen H, Mu X, Zong B (1997) Chin J Catal 18:110Google Scholar
  18. 18.
    Sane S, Bonnier JM, Damon JP, Masson J (1984) Appl Catal 9:69. doi: https://doi.org/10.1016/0166-9834(84)80039-1 CrossRefGoogle Scholar
  19. 19.
    Khaidar M, Allibert C, Driole J, Germi P (1982) Mater Res Bull 17:329. doi: https://doi.org/10.1016/0025-5408(82)90081-2 CrossRefGoogle Scholar
  20. 20.
    Hamar-Thibault S, Koscielski T, Damon JP, Masson J (1989) J Catal 56:57Google Scholar
  21. 21.
    Pearson WB (1972) The crystal chemistry and physics of metals and alloys. Wiley-Interscience, New York, p 14Google Scholar
  22. 22.
    Bradley AJ, Taylor A (1937) Proc Roy Soc (Lond) A 159:56CrossRefGoogle Scholar
  23. 23.
    Bradley AJ, Taylor A (1937) Philos Mag 23:1049CrossRefGoogle Scholar
  24. 24.
    Chen H, Wang R (2008) Nucl Instrum Methods B 266:1062. doi: https://doi.org/10.1016/j.nimb.2008.02.030 CrossRefGoogle Scholar
  25. 25.
    Robertson SD, Freel J, Anderson RB (1972) J Catal 24:130. doi: https://doi.org/10.1016/0021-9517(72)90017-6 CrossRefGoogle Scholar
  26. 26.
    Sassoulas R, Trambouze Y (1964) Bull Soc Chim Fr 5:985Google Scholar
  27. 27.
    Balandin AA (1958) Adv Catal 10:96. doi: https://doi.org/10.1016/S0360-0564(08)60405-8 Google Scholar
  28. 28.
    Hu H, Qiao M, Wang S, Fan K, Li H, Zong B et al (2004) J Catal 221:612. doi: https://doi.org/10.1016/j.jcat.2003.09.027 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Rong Wang
    • 1
    Email author
  • Houwen Chen
    • 1
  • Zhilong Lu
    • 1
  • Shaohong Qiu
    • 1
  • Tsun Ko
    • 1
  1. 1.Department of Materials Physics and ChemistryUniversity of Science and Technology BeijingBeijingPeople’s Republic of China

Personalised recommendations