Advertisement

Journal of Materials Science

, Volume 43, Issue 17, pp 5784–5789 | Cite as

Y2O3 and Nd2O3 co-stabilized ZrO2-WC composites

  • Sedigheh Salehi
  • Omer Van der Biest
  • Jef Vleugels
Article

Abstract

Y2O3 + Nd2O3 co-stabilized ZrO2-based composites with 40 vol% WC were fully densified by pulsed electric current sintering (PECS) at 1350 °C and 1450 °C. The influence of the PECS temperature and Nd2O3 co-stabilizer content on the densification, hardness, fracture toughness and bending strength of the composites was investigated. The best combination of properties was obtained for a 1 mol% Y2O3 and 0.75 mol% Nd2O3 co-stabilized composite densified for 2 min at 1450 °C under a pressure of 62 MPa, resulting in a hardness of 15.5 ± 0.2 GPa, an excellent toughness of 9.6 ± 0.4 MPa.m0.5 and an impressive 3-point bending strength of 2.04 ± 0.08 GPa. The hydrothermal stability of the 1 mol% Y2O3 + 1 mol% Nd2O3 co-stabilized ZrO2-WC (60/40) composites was compared with that of the equivalent 2 mol% Y2O3 stabilized ceramic. The double stabilized composite did not degrade in 1.5 MPa steam at 200 °C after 4000 min, whereas the yttria stabilized composite degraded after less than 2000 min. Moreover, the (1Y,1Nd) ZrO2-WC composites have a substantially higher toughness (~9 MPa.m0.5) than their 2Y stabilized equivalents (~7 MPa.m0.5).

Keywords

Yttria Y2O3 Electrical Discharge Machine Nd2O3 High Fracture Toughness 

Notes

Acknowledgements

S. Salehi thanks the Research Council of K.U.Leuven for a doctoral scholarship (DB/07/012). This work was supported by the Commission of the European Communities within the 6th Framework Program under project No. STRP 505541–1.

References

  1. 1.
    Hannink RHJ, Kelly PM, Muddle BC (2000) J Am Ceram Soc 83:461CrossRefGoogle Scholar
  2. 2.
    Bonny K, De Baets P, Vleugels J, Salehi A, Van der Biest O, Lauwers B et al, J Mat Proc Tech (in press)Google Scholar
  3. 3.
    Lauwers B, Brans K, Liu W, Vleugels J, Salehi S, Vanmeensel K (2008) CIRP Ann Manu Tech 57:191. doi: https://doi.org/10.1016/j.cirp.2008.03.089 CrossRefGoogle Scholar
  4. 4.
    Salehi S, Van der Biest O, Vleugels J (2006) J Eur Ceram Soc 26:3173. doi: https://doi.org/10.1016/j.jeurceramsoc.2005.10.010 CrossRefGoogle Scholar
  5. 5.
    Salehi S, Van der Biest O, Brans K, Vleugels J (2008) J Am Ceram Soc (submitted)Google Scholar
  6. 6.
    Vleugels J, Van Der Biest O (1999) J Am Ceram Soc 82:2717CrossRefGoogle Scholar
  7. 7.
    Basu B, Vleugels J, Van der Biest O (2005) J Eur Ceram Soc 25:3629. doi: https://doi.org/10.1016/j.jeurceramsoc.2004.09.017 CrossRefGoogle Scholar
  8. 8.
    Jiang D, Van der Biest O, Vleugels J (2007) J Eur Ceram Soc 27:1247. doi: https://doi.org/10.1016/j.jeurceramsoc.2006.05.028 CrossRefGoogle Scholar
  9. 9.
    Huang SG, Vanmeensel K, Van der Biest O, Vleugels J (2007) J Eur Ceram Soc 27:3269. doi: https://doi.org/10.1016/j.jeurceramsoc.2006.11.079 CrossRefGoogle Scholar
  10. 10.
    Anné G, Put S, Vanmeensel K, Jiang D, Vleugels J, Van der Biest O (2005) J Eur Ceram Soc 25:55. doi: https://doi.org/10.1016/j.jeurceramsoc.2004.01.015 CrossRefGoogle Scholar
  11. 11.
    Lawson S (1995) J Eur Ceram Soc 15:485. doi: https://doi.org/10.1016/0955-2219(95)00035-S CrossRefGoogle Scholar
  12. 12.
    Chevalier J, Cales B, Drouin J (1999) J Am Ceram Soc 82:2150CrossRefGoogle Scholar
  13. 13.
    Salehi S, Vanmeensel K, Van der Biest O, Vleugels J (2008) J Am Ceram Soc (submitted)Google Scholar
  14. 14.
    Yuan ZX, Vleugels J, Van der Biest O (2000) J Mater Sci Lett 19:359. doi: https://doi.org/10.1023/A:1006714032131 CrossRefGoogle Scholar
  15. 15.
    Vanmeensel K, Laptev A, Hennicke J, Vleugels J, Van der Biest O (2005) Acta Mater 53:4379. doi: https://doi.org/10.1016/j.actamat.2005.05.042 CrossRefGoogle Scholar
  16. 16.
    Toraya H, Yoshimura M, Somiya S (1984) J Am Ceram Soc 67:C119. doi: https://doi.org/10.1111/j.1151-2916.1984.tb19614.x Google Scholar
  17. 17.
    Anstis GR, Chantikul P, Lawn BR, Marshall DB (1981) J Am Ceram Soc 64:533. doi: https://doi.org/10.1111/j.1151-2916.1981.tb10320.x CrossRefGoogle Scholar
  18. 18.
    ASTM Standard E 1876-99 (1994) ASTM Annual Book of Standards, Philadelphia, PAGoogle Scholar
  19. 19.
    Moskała N, Pyda W (2006) J Eur Ceram Soc 26:3845. doi: https://doi.org/10.1016/j.jeurceramsoc.2005.12.012 CrossRefGoogle Scholar
  20. 20.
    Wang J, Stevens R (1989) J Mater Sci 24:3424Google Scholar
  21. 21.
    Awaji H, Choi SM, Yagi E (2002) Mech Mater 34:411. doi: https://doi.org/10.1016/S0167-6636(02)00129-1 CrossRefGoogle Scholar
  22. 22.
    Evans AG, Faber KT (1981) J Am Ceram Soc 64:394. doi: https://doi.org/10.1111/j.1151-2916.1981.tb09877.x CrossRefGoogle Scholar
  23. 23.
    Shannon RD (1976) Acta Crystallogr 32:751. doi: https://doi.org/10.1107/S0567739476001551 CrossRefGoogle Scholar
  24. 24.
    Rey JFQ, Muccillo ENS (2004) J Eur Ceram Soc 24:1287. doi: https://doi.org/10.1016/S0955-2219(03)00498-9 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Sedigheh Salehi
    • 1
  • Omer Van der Biest
    • 1
  • Jef Vleugels
    • 1
  1. 1.Department of Metallurgy and Materials EngineeringK.U.LeuvenLeuvenBelgium

Personalised recommendations