Advertisement

Journal of Materials Science

, Volume 43, Issue 17, pp 5734–5746 | Cite as

Effect of electromagnetic stirring on melt pool free surface dynamics during vacuum arc remelting

  • P. ChapelleEmail author
  • A. Jardy
  • J. P. Bellot
  • M. Minvielle
Article

Abstract

The deformation of the free surface of the liquid pool in the VAR process may play a key role in explaining the apparition of surface defects on the ingot skin. In the present study, the deformation of the surface induced by electromagnetic stirring is investigated, for a simplified geometry, using CFD-based simulations, combining models for the turbulent fluid flow, heat transfer, free surface movements and electromagnetic forces. Particular attention is given to the implementation of thermal and electrical boundary conditions at the moving free surface. Verification of the developed model is carried out by comparison with the dedicated code SOLAR. The free surface dynamics of a liquid zirconium pool is then quantitatively analysed for different stirring procedures, and the effects of the stirring parameters (magnetic induction, reversal time) are predicted and discussed. The obtained results provide some insights into mechanisms by which surface deformation may influence the ingot skin solidification, leading to poor ingot surface quality.

Keywords

Free Surface Liquid Metal Lorentz Force Liquid Pool Crucible Wall 

References

  1. 1.
    Davidson PA, He X, Lowe AJ (2000) Mater Sci Tech 16:699CrossRefGoogle Scholar
  2. 2.
    Xu X, Zhang W, Lee PD (2002) Metall Mater Trans A Phys Metall Mater Sci 33:1805. doi: https://doi.org/10.1007/s11661-002-0189-z CrossRefGoogle Scholar
  3. 3.
    Quatravaux T, Ryberon S, Hans S, Jardy A, Lusson B, Richy PE et al (2004) J Mater Sci 39:7183. doi: https://doi.org/10.1023/B:JMSC.0000048730.26836.68 CrossRefGoogle Scholar
  4. 4.
    Mitchell A (2005) Mater Sci Eng A 413–414:10. doi: https://doi.org/10.1016/j.msea.2005.08.157 CrossRefGoogle Scholar
  5. 5.
    Hans S, Jardy A, Ablitzer D (1994) In: Mitchell A, J. Fernihough J (eds) Proceedings of international symposium on liquid metal processing and casting, Santa Fe, USA, p 143Google Scholar
  6. 6.
    Wilson AF, Hamel J, Fox SP, Jardy A, Ablitzer D (2003) In: Proceedings of the 10th world conference on titanium, Hambourg, GermanyGoogle Scholar
  7. 7.
    Thomas BG, Zhu H (1995) In: Ohnaka I, Stefanescu D (eds) Proceedings of international symposia on advanced materials & tech. for 21st century, Honolulu (USA), TMS, Warrendale, PA, p 197Google Scholar
  8. 8.
    Kumar S, Meech JA, Samarasekera IV, Brimacombe JK, Rakocevic V (1999) Ironmak Steelmak 26:269. doi: https://doi.org/10.1179/030192399677130 CrossRefGoogle Scholar
  9. 9.
    Thomas BG, Jenkins MS, Mahapatra RB (2004) Ironmak Steelmak 31:485. doi: https://doi.org/10.1179/030192304225019261 CrossRefGoogle Scholar
  10. 10.
    Yasunaka H, Taniguchi K, Kokita M, Inoue T (1995) ISIJ Int 35:784. doi: https://doi.org/10.2355/isijinternational.35.784 CrossRefGoogle Scholar
  11. 11.
    Bocher G, Obermann R, Winklre B, Kruger G, Patte P (1991) In: Proceeding of 1st European Conference on Continuous Casting, Florence, Associazione Italiana di Metallurgica, Milan, Italy, p 205Google Scholar
  12. 12.
    Hans S (1995) Modélisation des transferts couples de chaleur, de soluté et de quantité de mouvement lors de la refusion à l’arc sous vide (VAR)—Application aux alliages de titane, Thèse INPL (in french)Google Scholar
  13. 13.
    Documentation FLUENT (User’s Guide, UDF Manual) Version 6.2.16, Fluent, Inc., Lebanon, New Hampshire (2005)Google Scholar
  14. 14.
    Hirt CW, Nichols BD (1981) J Comput Phys 39:201. doi: https://doi.org/10.1016/0021-9991(81)90145-5 CrossRefGoogle Scholar
  15. 15.
    Youngs DL (1982) In: Morton KW, Baines MJ (eds) Numerical methods for fluid dynamics. Academic Press, New York, p 273Google Scholar
  16. 16.
    Launder BE, Spalding DB (1974) Comput Methods Appl Mech Eng 2:269. doi: https://doi.org/10.1016/0045-7825(74)90029-2 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • P. Chapelle
    • 1
    Email author
  • A. Jardy
    • 1
  • J. P. Bellot
    • 1
  • M. Minvielle
    • 2
  1. 1.Laboratoire de Science et Génie des Matériaux et de Métallurgie (UMR CNRS 7584) Ecole des Mines, Parc de SauruptNancy cedexFrance
  2. 2.AREVACentre de Recherches de la Compagnie Européenne du Zirconium CEZUSUgine cedexFrance

Personalised recommendations