Advertisement

Journal of Materials Science

, Volume 43, Issue 17, pp 5804–5808 | Cite as

Elastic property prediction by finite element analysis with random distribution of materials for tungsten/silver composite

  • L. M. Xu
  • C. Li
  • H. Fan
  • B. WangEmail author
Article

Abstract

In the present numerical study, we introduce a finite element analysis for heterogeneous materials via a random distribution of materials to predict effective elastic properties. With this random distributing strategy, a large scale parametric analysis via finite element becomes feasible for the multi-phase heterogeneous solids. Taking a well-documented tungsten–silver bi-continuous material as an example, the numerical prediction provided here for the effective properties is checked by experimental testing data available in open publication. Discussions on the present finite element prediction and other approaches are also made by comparing with Hashin and Shtrikman (J Mech Phys Solids 11:127–140, 1963) bounds in the composite mechanics.

Keywords

Finite Element Analysis Type Composite Effective Elastic Property High Order Element Finite Element Prediction 

References

  1. 1.
    Christensen R (1979) Mechanics of composite materials. Wiley, New YorkGoogle Scholar
  2. 2.
    Mura T (1982) Micromechanics of defects in solids. Martinus Nijhoff PublisherGoogle Scholar
  3. 3.
    Taya M, Arsenault RJ (1989) Metal matrix composites. Pergamon PressGoogle Scholar
  4. 4.
    Hu N, Wang B, Tan GW, Yao ZH, Yuan WF (2000) Comp Sci Technol 60:1811–1823. doi: https://doi.org/10.1016/S0266-3538(00)00054-3 CrossRefGoogle Scholar
  5. 5.
    Iovane G, Nasedkin AV (2005) Comput Struc 84:19–24. doi: https://doi.org/10.1016/j.compstruc.2005.09.002 CrossRefGoogle Scholar
  6. 6.
    Wang WX, Luo D, Takao Y, Kakimoto K (2006) Comput Struc 84:991–1001. doi: https://doi.org/10.1016/j.compstruc.2006.02.013 CrossRefGoogle Scholar
  7. 7.
    Umekawa S, Kotfila R, Sherby OD (1965) J Mech Phys 13:229–235. doi: https://doi.org/10.1016/0022-5096(65)90012-8 CrossRefGoogle Scholar
  8. 8.
    Christensen R, Lo KH (1979) J Mech Phys Solids 27:315–330. doi: https://doi.org/10.1016/0022-5096(79)90032-2 CrossRefGoogle Scholar
  9. 9.
    Roberts AP, Garboczi EJ (1999) J Mech Phys Solids 47:2029–2055. doi: https://doi.org/10.1016/S0022-5096(99)00016-2 CrossRefGoogle Scholar
  10. 10.
    Hashin Z, Shtrikman S (1963) J Mech Phys Solids 11:127–140. doi: https://doi.org/10.1016/0022-5096(63)90060-7 CrossRefGoogle Scholar
  11. 11.
    Garboczi EJ, Day AR (1995) J Mech Phys Solid 43:1349–1362CrossRefGoogle Scholar
  12. 12.
    MATLAB The MathWorks, Inc., Massachusetts (2005)Google Scholar
  13. 13.
    Version ANSYS 8.1, ANSYS, Inc., Southpointe (2005)Google Scholar
  14. 14.
    Budiansky B (1965) J Mech Phys Solids 13:223–227. doi: https://doi.org/10.1016/0022-5096(65)90011-6 CrossRefGoogle Scholar
  15. 15.
    Christensen R (1990) J Mech Phys Solids 38:379–404. doi: https://doi.org/10.1016/0022-5096(90)90005-O CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.School of Mechatronics EngineeringUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China
  2. 2.School of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingaporeSingapore
  3. 3.School of EngineeringKing’s College, University of AberdeenAberdeenUK

Personalised recommendations