Advertisement

Journal of Materials Science

, Volume 43, Issue 17, pp 5720–5727 | Cite as

Microstructure and wear assessment of TIG surface alloying of CP-titanium with silicon

  • F. Adib Hajbagheri
  • S. F. Kashani BozorgEmail author
  • A. A. Amadeh
Article

Abstract

Tungsten Inert Gas (TIG) process has been employed to produce surface alloyed tracks on preplaced CP-Ti substrate with Si to improve wear resistance. Uniform alloyed tracks with hypo eutectic binary Ti–Si compositions have been achieved using preplaced layers with Si amounts of up to 40 at.%. Si content of the TIG alloyed tracks was found to be affected by the TIG heat input and Si amount of the preplaced layer. The microstructures of the surface alloyed tracks showed phases of primary α-Ti in dendrites and eutectic lamellas of α-Ti and Ti5Si3 within the interdendritic regions using optical and scanning electron microscopy, X-ray diffractometry, and energy dispersive spectroscopy. Finer dendrites were found at lower heat input. A maximum micro hardness value of 750 HV was found in the surface alloyed track, which is ~4 to 5 times of that of the substrate material (180 HV). Pin-on-disk wear tests exhibited the better performance of the surface alloyed tracks than the untreated material which is attributed to the presence of Ti5Si3 intermetallic compound in the microstructure.

Keywords

Heat Input Wear Debris Molten Pool Energy Dispersive Spectrometer Interdendritic Region 

References

  1. 1.
    ASM handbook, vol 2-properties and selection: nonferrous alloys and special—purpose materials. ASM International (1990)Google Scholar
  2. 2.
    Handbook ASM vol 18—friction, lubrication and wear technology. ASM International (1990)Google Scholar
  3. 3.
  4. 4.
    Bi Q, Matthews A (2003) Surf Coat Technol 163–164:597. doi: https://doi.org/10.1016/S0257-8972(02)00630-8 Google Scholar
  5. 5.
    Pfohl C, Rie KT (1999) Surf Coat Technol 116–119:911. doi: https://doi.org/10.1016/S0257-8972(99)00141-3 CrossRefGoogle Scholar
  6. 6.
    Lifang X, Xinxin M, Yue S (2000) Wear 246(1–2):40. doi: https://doi.org/10.1016/S0043-1648(00)00444-0 Google Scholar
  7. 7.
    Liang W, Zao XG (2001) Scr Mater 44:1049–1054. doi: https://doi.org/10.1016/S1359-6462(01)00675-3 CrossRefGoogle Scholar
  8. 8.
    Euh K, Lee J, Lee S, Koo Y, Kim NJ (2001) Scr Mater 45:1–6. doi: https://doi.org/10.1016/S1359-6462(01)00981-2 CrossRefGoogle Scholar
  9. 9.
    Oh J, Lee S (2004) Surf Coat Technol 179:340. doi: https://doi.org/10.1016/S0257-8972(03)00811-9 CrossRefGoogle Scholar
  10. 10.
    Mridha S, Baker TN (1997) J Mater Process Technol 63:432CrossRefGoogle Scholar
  11. 11.
    Tiam YS, Chen CZ, Chen LX, Huo QH (2006) Mater Lett 60:109. doi: https://doi.org/10.1016/j.matlet.2005.07.082 CrossRefGoogle Scholar
  12. 12.
    Dutta Majumdar J, Mordike BL, Manna I (2000) Wear 242:18. doi: https://doi.org/10.1016/S0043-1648(00)00363-X CrossRefGoogle Scholar
  13. 13.
    Dutta Majumdar J, Weisheit A, Mordike BL, Manna I (1999) Mater Sci Eng A 266:123. doi: https://doi.org/10.1016/S0921-5093(99)00045-3 CrossRefGoogle Scholar
  14. 14.
    Wenbin D, Haiyan J, Xiaoqin Z, Dehui L, Shoushan Y (2007) J Alloy Compd 429:233. doi: https://doi.org/10.1016/j.jallcom.2006.03.083 CrossRefGoogle Scholar
  15. 15.
    Baytoz S, Uttran M, Mustafa M (2005) Appl Surf Sci 252:1313. doi: https://doi.org/10.1016/j.apsusc.2005.02.088 CrossRefGoogle Scholar
  16. 16.
    Mridha S (2005) J Mater Process Technol 168:471–477. doi: https://doi.org/10.1016/j.jmatprotec.2005.02.247 CrossRefGoogle Scholar
  17. 17.
    Mridha S, Ong HS, Poh LS, Cheang P (2001) J Mater Process Technol 113:516. doi: https://doi.org/10.1016/S0924-0136(01)00609-4 CrossRefGoogle Scholar
  18. 18.
    Anthony TR, Cline HE (1977) J Appl Phys 48(9):3888. doi: https://doi.org/10.1063/1.324260 CrossRefGoogle Scholar
  19. 19.
    Chade T, Mazumder J (1983) Metall Trans 14B:181CrossRefGoogle Scholar
  20. 20.
    Easterling KE (1992) Introduction to the physical metallurgy welding. Butterworth-Heinemann, LondonGoogle Scholar
  21. 21.
    Flower HM, Swann PR, West DRF (1972) J Mater Sci 7:929. doi: https://doi.org/10.1007/BF00550440 CrossRefGoogle Scholar
  22. 22.
    Kurz W, Fisher DJ (1984) Fundamentals of solidification. Trans Tech Pub., Netherlands, p 71Google Scholar
  23. 23.
    Chumbley LS, Ohles MA, Fraser HL (1986) In: Froes FH (ed) Titanium rapid solidification technology. TMS-AIME, Warrendale, PA, p 211Google Scholar
  24. 24.
    Abboud JH, West DRF (1991) Surf Eng 7(2):159CrossRefGoogle Scholar
  25. 25.
    Massalski TB, Okamoto H, Subramanian PR, Pkacparzak L (1990) Binary alloy phase diagram. ASM International, Material Park, OHGoogle Scholar
  26. 26.
    Fasasi AY, Roy SK, Galerie A, Pons M, Caillet M (1992) Mater Lett 13:204CrossRefGoogle Scholar
  27. 27.
    Bumps ES, Kessler HD, Hansen M (1953) Trans ASM 45:1008Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • F. Adib Hajbagheri
    • 1
  • S. F. Kashani Bozorg
    • 1
  • A. A. Amadeh
    • 1
  1. 1.School of Metallurgy and Materials Engineering, University College of EngineeringUniversity of TehranTehranIran

Personalised recommendations