Advertisement

Journal of Materials Science

, Volume 43, Issue 23–24, pp 7474–7480 | Cite as

Novel microstructures from severely deformed Al–Ti alloys created by chip formation in machining

  • Jiazhao Cai
  • Andreas Kulovits
  • M. Ravi ShankarEmail author
  • Jörg Wiezorek
Ultrafine-Grained Materials

Abstract

We present some consequences of Severe Plastic Deformation (SPD) of Al–Ti alloys by chip formation in machining that can enable opportunities for creating novel microstructures. Chips cut from Al-6wt%Ti are composed of a refined dispersion of the fragmented remains of a hitherto coarse Al3Ti embedded in a nanostructured matrix. This multi-phase nanostructured chip material demonstrates considerable resistance to coarsening owing to the thermally stable dispersion of ultra-fine Al3Ti dispersions and thus has promise in structural alloy applications. Furthermore, the Al–Ti machining chips are shown to possess excellent grain refining characteristics, leading to microstructurally refined and homogeneous Al alloy castings. This realization enables a low-cost route for enhancing the efficiency of the grain refiner master alloy systems by exploiting SPD during chip formation.

Keywords

Severe Plastic Deformation Equal Channel Angular Pressing Master Alloy Chip Formation Al3Ti 

Notes

Acknowledgements

Shankar and Cai acknowledge support from the Central Research Development Fund, University of Pittsburgh.

References

  1. 1.
    Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103. doi: https://doi.org/10.1016/S0079-6425(99)00007-9 CrossRefGoogle Scholar
  2. 2.
    Ravi Shankar M, Chandrasekar S, King AH, Compton WD (2005) Acta Mater 53:4781. doi: https://doi.org/10.1016/j.actamat.2005.07.006 CrossRefGoogle Scholar
  3. 3.
    Ravi Shankar M, Verma R, Rao BC, Chandrasekar S, Compton WD, King AH et al (2007) Metallurgical Mater Trans A 38:1899. doi: https://doi.org/10.1007/s11661-007-9257-8 CrossRefGoogle Scholar
  4. 4.
    Ravi Shankar M, Rao BC, Chandrasekar S, Compton WD, King AH (2008) Scr Mater 58:675. doi: https://doi.org/10.1016/j.scriptamat.2007.11.040 CrossRefGoogle Scholar
  5. 5.
    Quested TE, Greer AL (2004) Acta Mater 52:3859. doi: https://doi.org/10.1016/j.actamat.2004.04.035 CrossRefGoogle Scholar
  6. 6.
    Shaw MC (1984) Metal cutting principles. Oxford University Press, OxfordGoogle Scholar
  7. 7.
    Knipling KE, Dunand DC, Seidman DN (2007) Metallurgical Mater Trans A 38:2552. doi: https://doi.org/10.1007/s11661-007-9283-6 CrossRefGoogle Scholar
  8. 8.
    Park K-T, Myung S-H, Shin DH, Lee CS (2004) Mater Sci Eng A 371:178. doi: https://doi.org/10.1016/j.msea.2003.11.042 CrossRefGoogle Scholar
  9. 9.
    Swaminathan S (2005) Nanoscale microstructures in substitutional solid solutions by large strain machining. Ph.D. Dissertation, Purdue UniversityGoogle Scholar
  10. 10.
    Zhang Z, Hosoda S, Kim I-S, Watanabe Y (2006) Mater Sci Eng A 425:55. doi: https://doi.org/10.1016/j.msea.2006.03.018 CrossRefGoogle Scholar
  11. 11.
    Li YJ, Arnberg L (2003) Mater Sci Eng A 347:130. doi: https://doi.org/10.1016/S0921-5093(02)00555-5 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Jiazhao Cai
    • 1
  • Andreas Kulovits
    • 2
  • M. Ravi Shankar
    • 1
    Email author
  • Jörg Wiezorek
    • 2
  1. 1.Department of Industrial EngineeringUniversity of PittsburghPittsburghUSA
  2. 2.Department of Mechanical Engineering and Materials ScienceUniversity of PittsburghPittsburghUSA

Personalised recommendations