Advertisement

Journal of Materials Science

, Volume 43, Issue 17, pp 5755–5762 | Cite as

The gelation behaviors of the reactive blends of nylon1212 and functional elastomer

  • Wanjie WangEmail author
  • Yanxia Cao
  • Jingwu Wang
  • Qiang Zheng
Article

Abstract

Studies on the gelation behaviors of the reactive blends of nylon1212 and functional elastomer were carried out. The results show that the curves of the storage modulus(G′)–frequency (ω) exhibit a gel plateau in the low ω region, and the transition from liquid-like to solid-like viscoelastic behaviors emerges with the concentration of SEBS-g-MA increasing. There exist the gelation behaviors in the blending process similar to those of crosslinking polymer. Based on Winter’s method, the gel point of blends is determined to be, φg = 17.45 wt%, and the corresponding value of tanδ is 1.44. The gel index n calculated is 0.61 and the gel strength Sg is 1.08 × 104 Pa s0.61. However, the non-reactive blends of nylon1212 and elastomer have no emergence of gelation behaviors. The morphology analysis shows that the gel point for the reactive blends is a threshold of cocontinuous morphology, and morphology analysis can also be a method to determine the gel point.

Keywords

Viscoelastic Behavior Rubber Particle Crosslinking Density Melt Flow Index Entanglement Density 

References

  1. 1.
    Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, New YorkGoogle Scholar
  2. 2.
    Stockmayer WH (1943) J Chem Phys 11:45. doi: https://doi.org/10.1063/1.1723803 CrossRefGoogle Scholar
  3. 3.
    De Gennes PG (1979) Scaling concepts in polymer physics. Cornell University Press, New York and LondonGoogle Scholar
  4. 4.
    Stauffer D (1985) Introduction of percolation theory. Taylor and Francis, LondonCrossRefGoogle Scholar
  5. 5.
    Martin JE, Adolf D (1991) Annu Rev Phys Chem 42:311CrossRefGoogle Scholar
  6. 6.
    Winter HH, Chambon F (1986) J Rheol (NYNY) 30:367. doi: https://doi.org/10.1122/1.549853 CrossRefGoogle Scholar
  7. 7.
    Lipshitz S, Macosko CW (1976) Polym Eng Sci 16:803CrossRefGoogle Scholar
  8. 8.
    Valles EM, Macosko CW (1976) Rubber Chemtech 49:1232CrossRefGoogle Scholar
  9. 9.
    Castro JM, Macosko CW, Perry SJ (1984) Polym Commun (Guildf) 25:82Google Scholar
  10. 10.
    Apicella A, Masi P, Nicolais L (1984) Rheol Acta 23:291. doi: https://doi.org/10.1007/BF01332194 CrossRefGoogle Scholar
  11. 11.
    Adam M, Delsanti M, Durand D (1985) Macromolecules 18:2285. doi: https://doi.org/10.1021/ma00153a041 CrossRefGoogle Scholar
  12. 12.
    Malkin AY (1985) Plaste Kautschuk 32:281Google Scholar
  13. 13.
    Allain C, Salome L (1987) Polym Commun (Guildf) 28:109CrossRefGoogle Scholar
  14. 14.
    Axelos MAV, Kolb M (1990) Phys Rev Lett 64:1457. doi: https://doi.org/10.1103/PhysRevLett.64.1457 CrossRefGoogle Scholar
  15. 15.
    Tung CYM, Dynes PJ (1982) J Appl Polym Sci 27:569. doi: https://doi.org/10.1002/app.1982.070270220 CrossRefGoogle Scholar
  16. 16.
    Chambon F, Petrovic ZS, MacKnight WJ, Winter HH (1986) Macromolecules 19:2146. doi: https://doi.org/10.1021/ma00162a007 CrossRefGoogle Scholar
  17. 17.
    Winter HH (1987) Polym Eng Sci 27:1698CrossRefGoogle Scholar
  18. 18.
    Chambon F, Winter HH (1987) J Rheol (NYNY) 31:683. doi: https://doi.org/10.1122/1.549955 CrossRefGoogle Scholar
  19. 19.
    Vilgis TA, Winter HH (1988) Colloid Polym Sci 266:494. doi: https://doi.org/10.1007/BF01420759 CrossRefGoogle Scholar
  20. 20.
    Scanlan IC, Winter HH (1991) Macromolecules 24:47. doi: https://doi.org/10.1021/ma00001a008 CrossRefGoogle Scholar
  21. 21.
    Izuka A, Winter HH, Hashimoto T (1992) Macromolecules 25:2422. doi: https://doi.org/10.1021/ma00035a020 CrossRefGoogle Scholar
  22. 22.
    Kjøniksen AL, Nyström B (1996) Macromolecules 29:5215. doi: https://doi.org/10.1021/ma960094q CrossRefGoogle Scholar
  23. 23.
    Mours M, Winter HH (1996) Macromolecules 29:7221. doi: https://doi.org/10.1021/ma9517097 CrossRefGoogle Scholar
  24. 24.
    Gao D, Heimann RB, Williams MC, Wardhaugh LT, Muhammad M (1999) J Mater Sci 34:1543. doi: https://doi.org/10.1023/A:1004516330255 CrossRefGoogle Scholar
  25. 25.
    Lai SM, Li HC, Liao YC (2007) Eur Polym J 43:1660. doi: https://doi.org/10.1016/j.eurpolymj.2007.02.009 CrossRefGoogle Scholar
  26. 26.
    Hassan A, Othman N, Wahit MU, Wei LJ, Rahmat AR, Ishak ZAM (2006) Macromol Symp 239:182. doi: https://doi.org/10.1002/masy.200690095 CrossRefGoogle Scholar
  27. 27.
    Tjong S, Xu S, Mai Y (2003) J Mater Sci 38:207. doi: https://doi.org/10.1023/A:1021132725370 CrossRefGoogle Scholar
  28. 28.
    Huang JJ, Keskkula H, Paul DR (2006) Polym Guildf 47:639. doi: https://doi.org/10.1016/j.polymer.2005.11.088 CrossRefGoogle Scholar
  29. 29.
    Bucknall CB, Lazzeri A (2000) J Mater Sci 35:427. doi: https://doi.org/10.1023/A:1004719401349 CrossRefGoogle Scholar
  30. 30.
    Oommen Z, Zachariah SR, Thomas S, Groeninckx G, Moldenaers P, Mewis J (2004) J Appl Polym Sci 92:252. doi: https://doi.org/10.1002/app.13652 CrossRefGoogle Scholar
  31. 31.
    Kumar CR, Nair SV, George KE (2003) Polym Eng Sci 43:1555CrossRefGoogle Scholar
  32. 32.
    Wang XD, Li HQ (2001) J Appl Polym Sci 36:5465Google Scholar
  33. 33.
    Han CD (1976) Rheology in polymer processing. Academic Press, New YorkGoogle Scholar
  34. 34.
    Yanovsky YG (1993) Polymer rheology: theory and practice. Chapman & Hall, LondonCrossRefGoogle Scholar
  35. 35.
    Adolf D, Martin JE, Wilcoxon JP (1990) Macromolecules 23:527. doi: https://doi.org/10.1021/ma00204a028 CrossRefGoogle Scholar
  36. 36.
    Mortimer S, Ryan AJ, Stanford JL (2001) Macromolecules 34:2973. doi: https://doi.org/10.1021/ma001835x CrossRefGoogle Scholar
  37. 37.
    Eloundou JP, Gerard JF, Harran D, Pascault JP (1996) Macromolecules 29:6907. doi: https://doi.org/10.1021/ma960287d CrossRefGoogle Scholar
  38. 38.
    Eloundou JP, Gerard JF, Harran D, Pascault JP (1996) Macromolecules 29:6917. doi: https://doi.org/10.1021/ma9602886 CrossRefGoogle Scholar
  39. 39.
    Hu X, Fan J, Yue CY (2001) J Appl Polym Sci 80:2437. doi: https://doi.org/10.1002/app.1350 CrossRefGoogle Scholar
  40. 40.
    Nijenhuis K, Winter HH (1989) Macromolecules 22:411. doi: https://doi.org/10.1021/ma00191a074 CrossRefGoogle Scholar
  41. 41.
    Ferry JD (1980) Viscoelastic properties of polymers. Wiley, New YorkGoogle Scholar
  42. 42.
    Chambon F, Winter HH (1985) Polym Bull 13:499. doi: https://doi.org/10.1007/BF00263470 CrossRefGoogle Scholar
  43. 43.
    Schwittay C, Mours M, Winter HH (1995) Faraday Discuss 101:93. doi: https://doi.org/10.1039/fd9950100093 CrossRefGoogle Scholar
  44. 44.
    Peyrelasse J, Lamarque M, Habas JP, Bounia NE (1996) Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 53:6126. doi: https://doi.org/10.1103/PhysRevE.53.6126 Google Scholar
  45. 45.
    Majumdar B, Keskkula H, Paul DR (1994) Polym Guildf 35:1386. doi: https://doi.org/10.1016/0032-3861(94)90338-7 CrossRefGoogle Scholar
  46. 46.
    Jafari SH, Pötschkea P, Stephan M, Warth H, Alberts H (2002) Polym Guildf 43:6985. doi: https://doi.org/10.1016/S0032-3861(02)00614-6 CrossRefGoogle Scholar
  47. 47.
    Scott CE, Macosko CW (1995) Polym Guildf 36:461. doi: https://doi.org/10.1016/0032-3861(95)91554-K CrossRefGoogle Scholar
  48. 48.
    Oshinski AJ, Keskkula H, Paul DR (1992) Polym Guildf 33:284. doi: https://doi.org/10.1016/0032-3861(92)90985-6 CrossRefGoogle Scholar
  49. 49.
    Okada O, Keskkula H, Paul DR (2000) Polym Guildf 41:8061. doi: https://doi.org/10.1016/S0032-3861(00)00163-4 CrossRefGoogle Scholar
  50. 50.
    Wu SH (1988) J Appl Polym Sci 35:549. doi: https://doi.org/10.1002/app.1988.070350220 CrossRefGoogle Scholar
  51. 51.
    Margolina A, Wu SH (1988) Polym Guildf 29:2170. doi: https://doi.org/10.1016/0032-3861(88)90108-5 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Wanjie Wang
    • 1
  • Yanxia Cao
    • 1
  • Jingwu Wang
    • 1
  • Qiang Zheng
    • 2
  1. 1.College of Materials Science and EngineeringZhengzhou UniversityZhengzhouChina
  2. 2.Department of Polymer Science and EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations