Journal of Materials Science

, Volume 43, Issue 17, pp 5763–5771 | Cite as

Eco-composite developed using biomorphous stiff skeleton of carbonised yucca and furfuryl alcohol as a filler

  • M. Krzesińska
  • J. Zachariasz
  • A. I. Lachowski
  • Ł. Smędowski


The aim of this research was to prepare a monolithic porous carbon–carbon composite on the basis of porous stiff skeleton obtained via carbonisation of blocks cut from horticultural waste, lignified inflorescence stems of yucca, Yucca flaccida. Then the blocks were infiltrated by furfuryl alcohol, polymerised, cross-linked and carbonised. Raw yucca carbonised at various temperatures and the resultant ecological composites were characterised using the following methods: helium gas densitometry, ultrasonic and electrical resistance measurements, the physical adsorption of N2 gas at −196 °C, scanning (SEM) and transmission (TEM) electron microscopies. Elemental analysis, i.e. the CHN content and organic constituents, were determined for raw yucca. The thermal decomposition of composites and their precursors were investigated at temperatures ranging from 20 to 940 °C using thermogravimetric analysis (TGA). The composites were found to be highly porous carbon materials thermo-resistant in inert atmosphere with a strong skeleton and hierarchically ordered structures. Their elastic and electrical properties were found to be anisotropic and dependent on the support properties.


Lignin Electric Resistivity Porous Carbon Ultrasonic Velocity Carbonisation Temperature 



The authors gratefully acknowledge Mrs. Sylwia Czajkowska for supplying the thermogram of TGA. The main organic components of yucca were determined in the Institute of Organic Chemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria. The TEM observations were made thanks to kindness of Silesian University, Department of Earth Sciences, Sosnowiec, Poland.


  1. 1.
    Rambo CR, Cao J, Sieber H (2004) Mater Chem Phys 87:345. doi: CrossRefGoogle Scholar
  2. 2.
    Sun B, Fan T, Zhang D et al (2004) Carbon 42:177. doi: CrossRefGoogle Scholar
  3. 3.
    Mizutani M, Takase H, Adachi N et al (2005) Sci Technol Adv Mater 6:76CrossRefGoogle Scholar
  4. 4.
    Fey T, Sieber H, Greil P (2005) J Eur Ceram Soc 25:1015. doi: CrossRefGoogle Scholar
  5. 5.
    Rambo CR, Cao J, Rusina O et al (2005) Carbon 43:1174. doi: CrossRefGoogle Scholar
  6. 6.
    Onyestyak G, Valyon J, Papp K (2005) Mater Sci Eng A 412:48. doi: CrossRefGoogle Scholar
  7. 7.
    Liu Z, Fan T, Zhang W et al (2005) Micropor Mesopor Mater 85:82. doi: CrossRefGoogle Scholar
  8. 8.
    Kim Y-J, Lee B-J, Suezaki H et al (2006) Carbon 44:1592. doi: CrossRefGoogle Scholar
  9. 9.
    Luo M, Gao J, Zhang X et al (2007) Mater Lett 61:186. doi: CrossRefGoogle Scholar
  10. 10.
    Li J, Shi X, Wang L et al (2007) J Colloid Interface Sci 315:230. doi: CrossRefGoogle Scholar
  11. 11.
    Wang Q, Jin GQ, Wang DH et al (2007) Mater Sci Eng A 459:1. doi: CrossRefGoogle Scholar
  12. 12.
    Ghanem H, Kormann M, Gerhard H et al (2007) J Eur Ceram Soc 27:3433. doi: CrossRefGoogle Scholar
  13. 13.
    Byrne CE, Nagle DC (1997) Carbon 35:267. doi: CrossRefGoogle Scholar
  14. 14.
    Singh M, Martinez-Fernandez J, de Arellano-Lopez AR (2003) Curr Opin Solid State Mater Sci 7:247. doi: CrossRefGoogle Scholar
  15. 15.
    Halada K (2003) Curr Opin Solid State Mater Sci 7:209. doi: CrossRefGoogle Scholar
  16. 16.
    Hirose T, Zhao B, Okabe T et al (2002) J Mater Sci 37:3453CrossRefGoogle Scholar
  17. 17.
    Sudin R, Swamy N (2006) J Mater Sci 41:6917CrossRefGoogle Scholar
  18. 18.
    de Souza Rodrigues C, Ghavami K, Stroeven P (2006) J Mater Sci 41:6925. doi: CrossRefGoogle Scholar
  19. 19.
    Tokoro R, Vu DM, Okubo K et al (2008) J Mater Sci 43:775. doi: CrossRefGoogle Scholar
  20. 20.
    Krzesińska M, Pilawa B, Pusz S et al (2006) Biomass Bioenergy 30:166. doi: CrossRefGoogle Scholar
  21. 21.
    Krzesińska M, Zachariasz J (2007) J Anal Appl Pyrol 80:209. doi: CrossRefGoogle Scholar
  22. 22.
    Krzesińska M, Zachariasz J (2007) J Phys: Conf Ser 79 Paper No. 012012Google Scholar
  23. 23.
    Krzesińska M, Zachariasz J, Muszyński J et al (2008) Bioresour Technol 99:5110. doi: CrossRefGoogle Scholar
  24. 24.
    Celzard A, Krzesińska M, Begin D et al (2002) Carbon 40:557. doi: CrossRefGoogle Scholar
  25. 25.
    Krzesińska M, Zachariasz J (2007) J Phys: Conf Ser 79 Paper No. 012011Google Scholar
  26. 26.
    Cheng HM, Endo H, Okabe T et al (1999) J Porous Mater 6:233. doi: CrossRefGoogle Scholar
  27. 27.
    Kercher AK, Nagle DC (2003) Carbon 41:15. doi: CrossRefGoogle Scholar
  28. 28.
    Basay E, Ozaki SK, Yalinkilic MK (2004) Wood Sci Technol 38:405Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • M. Krzesińska
    • 1
    • 2
  • J. Zachariasz
    • 1
  • A. I. Lachowski
    • 3
  • Ł. Smędowski
    • 2
  1. 1.Centre of Polymer and Carbon MaterialsPolish Academy of SciencesZabrzePoland
  2. 2.Department of Electron Technology, Institute of PhysicsSilesian Technical UniversityGliwicePoland
  3. 3.Institute of Chemical EngineeringPolish Academy of SciencesGliwicePoland

Personalised recommendations