Advertisement

Journal of Materials Science

, Volume 43, Issue 23–24, pp 7338–7343 | Cite as

Irradiation behavior of nanostructured 316 austenitic stainless steel

  • B. RadiguetEmail author
  • A. Etienne
  • P. Pareige
  • X. Sauvage
  • R. Valiev
Ultrafine-Grained Materials

Abstract

In order to get information about radiation resistance of ultrafine grained austenitic stainless steels, a 316 steel was deformed by high pressure torsion. The mean diameter of the grain after deformation was 40 nm. This material was annealed at 350 °C for 24 h or irradiated with 160 keV iron ions at 350 °C. Changes in the microstructure during annealing or irradiation were characterised by transmission electron microscopy (grain size) and laser assisted tomographic atom probe (solute distribution). Results indicate that this annealing has no influence on the grain size whereas the grain diameter increases under irradiation. Concerning the solute distribution, atom probe investigations show evidence of radiation-induced segregation at grain boundaries. Indeed, after irradiation, grain boundaries are enriched in nickel and silicon and depleted in chromium. On the contrary, no intragranular extended defects or precipitation are observed after irradiation.

Keywords

Martensite Point Defect Austenitic Stainless Steel Atom Probe High Pressure Torsion 

Notes

Acknowledgements

The authors gratefully thank EDF for providing 316 materials. Many thanks to Odile Kaïtasov (CSNSM-Orsay) and Michel Drouet (PHYMAT-Poitiers) for performing iron ion irradiations. The authors would like to thank M. Jenkins (Oxford) for TEM characterisations. The TEM investigations were supported by the IP3 project of the 6th Framework Programme of the European Commission: ESTEEM-Contract number 026019.

References

  1. 1.
    Grosssbeck ML, Ehrlich K, Wassilew C (1990) J Nucl Mater 174:264. doi: https://doi.org/10.1016/0022-3115(90)90240-N CrossRefGoogle Scholar
  2. 2.
    Odette GR, Lucas GE (1991) J Nucl Mater 179–181:572. doi: https://doi.org/10.1016/0022-3115(91)90152-W CrossRefGoogle Scholar
  3. 3.
    Lucas GE (1993) J Nucl Mater 206:287. doi: https://doi.org/10.1016/0022-3115(93)90129-M CrossRefGoogle Scholar
  4. 4.
    Bruemmer SM, Charlot LA, Simonen EP (1992) Proceedings of 5th international symposium on environmental degradation of materials in nuclear power Systems Water Reactors La Grange Park IL, 1992, pp 821Google Scholar
  5. 5.
    Bruemmer SM, Edwards DJ, Gertsman VY, Simonen EP (2001) Mat Res Soc Symp, vol 650Google Scholar
  6. 6.
    Allen TR, Was GS (1998) Acta Mater 46–10:3679CrossRefGoogle Scholar
  7. 7.
    Pokor C, Brechet Y, Dubuisson P, Massoud J-P, Barbu A (2004) J Nucl Mater 326:19. doi: https://doi.org/10.1016/j.jnucmat.2003.11.007 CrossRefGoogle Scholar
  8. 8.
    Mazias PJ (1993) J Nucl Mater 205:118. doi: https://doi.org/10.1016/0022-3115(93)90077-C CrossRefGoogle Scholar
  9. 9.
    Zinkle SJ, Mazias PJ, Stoller RE (1993) J Nucl Mater 206:266. doi: https://doi.org/10.1016/0022-3115(93)90128-L CrossRefGoogle Scholar
  10. 10.
    Kenik EA, Hojou K (1992) J Nucl Mater 191–194:1331. doi: https://doi.org/10.1016/0022-3115(92)90691-D CrossRefGoogle Scholar
  11. 11.
    Etienne A, Radiguet B, Pareige P, Massoud J-P, Pokor C, J Nucl Mater (submitted)Google Scholar
  12. 12.
    Edwards DJ, Simonen EP, Bruemmer SM (2003) J Nucl Mater 317:13. doi: https://doi.org/10.1016/S0022-3115(03)00002-3 CrossRefGoogle Scholar
  13. 13.
    Edwards DJ, Simonen EP, Garner FA, Greenwood LR, Oliver BM, Bruemmer SM (2003) J Nucl Mater 317:32. doi: https://doi.org/10.1016/S0022-3115(03)00003-5 CrossRefGoogle Scholar
  14. 14.
    Hashimoto N, Wakai E, Robertson JP (1999) J Nucl Mater 273:95. doi: https://doi.org/10.1016/S0022-3115(99)00009-4 CrossRefGoogle Scholar
  15. 15.
    Bond GM, Sencer BH, Garner FA, Hamilton ML, Allen TR, Porter DL (1999). In: Bruemmer SM, Ford P, Was G (eds) 9th International conference on environmental degradation of materials in nuclear systems–water reactors, The Minerals, Metals and Materials Society, PennsylvaniaGoogle Scholar
  16. 16.
    Watanabe S, Satu J, Sakaguchi N, Takahashi H, Namba C (1996) J Nucl Mater 239:200. doi: https://doi.org/10.1016/S0022-3115(96)00422-9 CrossRefGoogle Scholar
  17. 17.
    Busby JT, Was GS, Kenik EA (2002) J Nucl Mater 302:20. doi: https://doi.org/10.1016/S0022-3115(02)00719-5 CrossRefGoogle Scholar
  18. 18.
    Fukuya K, Nakano M, Fujii K, Torimaru T (2004) J Nucl Sci Technol 41–45:594. doi: https://doi.org/10.3327/jnst.41.594 CrossRefGoogle Scholar
  19. 19.
    Nita N, Schaeublin R, Victoria M (2004) J Nucl Mater 329–333:953. doi: https://doi.org/10.1016/j.jnucmat.2004.04.058 CrossRefGoogle Scholar
  20. 20.
    Samaras M, Derlet PM, Swygenhoven HV, Victoria M (2002) Phys Rev Lett 88:12. doi: https://doi.org/10.1103/PhysRevLett.88.125505 CrossRefGoogle Scholar
  21. 21.
    Voegeli W, Albe K, Hahn H (2003) Nucl Instrum Methods B 202:230. doi: https://doi.org/10.1016/S0168-583X(02)01862-1 CrossRefGoogle Scholar
  22. 22.
    Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103CrossRefGoogle Scholar
  23. 23.
    Nagy E, Mertinger V, Tranta F, Solyom J (2004) Mater Sci Eng A378:308CrossRefGoogle Scholar
  24. 24.
    De AK, Murdock DC, Mataya MC, Speer JG, Matlock DK (2004) Scripta Mater 50:1445. doi: https://doi.org/10.1016/j.scriptamat.2004.03.011 CrossRefGoogle Scholar
  25. 25.
    Ziegler JF, Biersack JP, Littmark U (1985) The stopping and range of ions in solids. Pergamon Press, New YorkGoogle Scholar
  26. 26.
    Kinchin GH, Pease RS (1955) Rep Prog Phys 18:1. doi: https://doi.org/10.1088/0034-4885/18/1/301 CrossRefGoogle Scholar
  27. 27.
    Blavette D, Bostel A, Sarrau JM, Deconihout B, Menand A (1993) Nature 363:432CrossRefGoogle Scholar
  28. 28.
    Gault B, Vurpillot F, Vella A, Gilbert M, Menand A, Blavette D et al (2006) Rev Sci Instrum 77:043705. doi: https://doi.org/10.1063/1.2194089 CrossRefGoogle Scholar
  29. 29.
    Belyakov A, Sakai T, Miura M, Kaibyshev R, Tsuzaki K (2002) Acta Mater 50:1547. doi: https://doi.org/10.1016/S1359-6454(02)00013-7 CrossRefGoogle Scholar
  30. 30.
    Rose M, Balogh AG, Hahn H (1997) Beam Interact Mater Atoms. Nuc Inst and Met in Phys Res, Section B 127–128:119CrossRefGoogle Scholar
  31. 31.
    Asano K, Fukuya K, Nakata K, Kodoma M (1992). In: Cubicciotti D (ed) Proceedings of the 5th international symposium on environmental degradation of materials in nuclear power systems water reactors, Monterey, CA, American Nuclear Society, La Grange Park, IL, 1992, p 838Google Scholar
  32. 32.
    Pareige P, Etienne A, Radiguet B, J Nucl Mater (accepted)Google Scholar
  33. 33.
    Pokor C, Massoud J-P, Pareige P, Garnier J, Loisnard D, Dubuisson P et al (2005) 12th international conference on environmental degradation of materials in nuclear systems—water reactors, The Minerals, Metals and Materials Society, Salt Lake CityGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • B. Radiguet
    • 1
    Email author
  • A. Etienne
    • 1
  • P. Pareige
    • 1
  • X. Sauvage
    • 1
  • R. Valiev
    • 2
  1. 1.Université de Rouen, Groupe de Physique des Matériaux, UMR CNRS 6634Saint Etienne du RouvrayFrance
  2. 2.Institute of Physics of Advanced Materials, Ufa State Aviation Technical UniversityUfaRussian Federation

Personalised recommendations