Journal of Materials Science

, Volume 43, Issue 23–24, pp 7264–7272 | Cite as

Stabilization of nanocrystalline grain sizes by solute additions

  • C. C. Koch
  • R. O. Scattergood
  • K. A. Darling
  • J. E. Semones
Ultrafine-Grained Materials

Abstract

This paper will review the grain growth in nanocrystalline materials with emphasis on the grain size stabilization that can result from solute additions. The grain growth in nominally pure nanocrystalline metals will be presented followed by descriptions of the stabilization of nanocrystalline grain sizes by kinetic approaches and thermodynamic strategies. The descriptions of nanocrystalline grain size by solute additions will be taken from the literature as well as from recent research in the authors’ laboratory. Examples of kinetic stabilization, which involves reduction of the grain boundary mobility, include second phase drag, solute drag, chemical ordering, and grain size stabilization. The thermodynamic stabilization, which is due to the lowering of the specific grain boundary energy by solute segregation to the grain boundaries, will be described for systems including Pd–Zr, Fe–Zr, Ni–W, Ni–P, and Co–P. Recrystallization during grain growth will be presented for the Ti–N system. Finally, a summary of alloys where nanocrystalline grain sizes can be maintained at annealing temperatures close to the melting point will be presented.

References

  1. 1.
    Suryanarayana C (1995) Int Mater Rev 40:41Google Scholar
  2. 2.
    Weissmuller J (1996) Synthesis and processing of nanocrystalline powder. In: Bourell DL (ed) TMS, Warrendale, PA, p 3Google Scholar
  3. 3.
    Malow TR, Koch CC (1996) Synthesis and processing of nanocrystalline powder. In: Bourell DL (ed) TMS, Warrendale, PA, p 33Google Scholar
  4. 4.
    Hofler HJ, Averback RS (1990) Scr Metall Mater 24:2401. doi:10.1016/0956-716X(90)90101-L CrossRefGoogle Scholar
  5. 5.
    Boylan K, Osstrander D, Erb U, Palumbo G, Aust KT (1991) Scr Metall Mater 25:2711. doi:10.1016/0956-716X(91)90144-P CrossRefGoogle Scholar
  6. 6.
    Michels A, Krill CE, Ehrhardt H, Birringer R, Wu DT (1999) Acta Mater 47:2143. doi:10.1016/S1359-6454(99)00079-8 CrossRefGoogle Scholar
  7. 7.
    Gao Z, Fultz B (1994) NanoStructured Mater 4:939. doi:10.1016/0965-9773(94)90100-7
  8. 8.
    Krill CE, Helfen L, Michels D, Natter H, Fitch A, Masson O et al (2001) Phys Rev Lett 86:842. doi:10.1103/PhysRevLett.86.842 PubMedCrossRefADSGoogle Scholar
  9. 9.
    Weissmuller J (1993) NanoStructured Mater 3:261. doi:10.1016/0965-9773(93)90088-S CrossRefGoogle Scholar
  10. 10.
    Weissmuller J (1994) J Mater Res 9:4. doi:10.1557/JMR.1994.0004 CrossRefADSGoogle Scholar
  11. 11.
    Kirchheim R (2002) Acta Mater 50:413. doi:10.1016/S1359-6454(01)00338-X CrossRefGoogle Scholar
  12. 12.
    Liu F, Kirchheim R (2004) Scr Mater 51:521. doi:10.1016/j.scriptamat.2004.05.042 CrossRefGoogle Scholar
  13. 13.
    Millett PC, Selvam RP, Saxena A (2007) Acta Mater 55:2329. doi:10.1016/j.actamat.2006.11.028 CrossRefGoogle Scholar
  14. 14.
    Birringer R (1989) Mater Sci Eng A A117:33. doi:10.1016/0921-5093(89)90083-X
  15. 15.
    Gunther B, Kumpmann A, Kunze H-D (1992) Scr Metall Mater 27:833. doi:10.1016/0956-716X(92)90401-Y CrossRefGoogle Scholar
  16. 16.
    Gertsman VY, Birringer R (1994) Scr Metall Mater 30:577. doi:10.1016/0956-716X(94)90432-4 CrossRefGoogle Scholar
  17. 17.
    Sanders PG, Weertman JR, Baker JG, Siegel RW (1993) Scr Metall Mater 29:91. doi:10.1016/0956-716X(93)90260-Y
  18. 18.
    Moelle CH, Fecht HJ (1995) NanoStructured Mater 6:421. doi:10.1016/0965-9773(95)00086-0 CrossRefGoogle Scholar
  19. 19.
    Michels A, Krill CE, Natter H, Birringer R (1998) Grain growth in polycrystalline materials III. In: Weiland H, Adams BL, Rollett AD (eds) TMS, Warrendale, PA, p 449Google Scholar
  20. 20.
    Lu L, Tao NR, Wang LB, Ding BZ, Lu K (2001) J Appl Phys 89:6408. doi:10.1063/1.1367401 CrossRefADSGoogle Scholar
  21. 21.
    Natter H, Schmelzer M, Hempelmann R (1998) J Mater Res 13:1186. doi:10.1557/JMR.1998.0169 CrossRefADSGoogle Scholar
  22. 22.
    Humphreys FJ, Hatherly M (1996) Recrystallization and related annealing phenomena, Chapt 9. Elsevier Science Inc, Tarrytown, NY, pp 289–295Google Scholar
  23. 23.
    Krill CE, Ehrhardt H, Birringer R, Metallkd Z (2005) 96:1134Google Scholar
  24. 24.
    Humphreys FJ, Hatherly M (1996) Recrystallization and related annealing phenomena, Chapt 9. Elsevier Science Inc, Tarrytown, NY, p 281Google Scholar
  25. 25.
    El-Sherik AM, Boylan D, Erb U, Palumbo G, Aust KT (1992) Mater Res Soc Symp Proc 238:727Google Scholar
  26. 26.
    Perez RJ, Jiang HG, Dogan CP, Lavernia EJ (1998) Metall Mater Trans A 29A:2469. doi:10.1007/s11661-998-0218-7 CrossRefGoogle Scholar
  27. 27.
    Shaw L, Luo H, Villegas J, Miracle D (2003) Acta Mater 51:2647. doi:10.1016/S1359-6454(03)00075-2 CrossRefGoogle Scholar
  28. 28.
    Knauth P, Charai A, Gas P (1993) Scr Metall Mater 28:325. doi:10.1016/0956-716X(93)90436-V CrossRefGoogle Scholar
  29. 29.
    Gao Z, Fultz B (1993) NanoStructured Mater 2:231. doi:10.1016/0965-9773(93)90150-A CrossRefGoogle Scholar
  30. 30.
    Bansal C, Gao Z, Fultz B (1995) NanoStructured Mater 5:327. doi:10.1016/0965-9773(95)00236-8 CrossRefGoogle Scholar
  31. 31.
    Lu K (1993) NanoStructured Mater 2:643. doi:10.1016/0965-9773(93)90039-E CrossRefGoogle Scholar
  32. 32.
    Krill CE III, Helfen L, Michels D, Natter H, Fitch A, Masson O et al (2001) Phys Rev Lett 86:842. doi:10.1103/PhysRevLett.86.842 Google Scholar
  33. 33.
    Estrin Y, Gottstein G, Rabkin E, Shvindlerman LS (2000) Scr Mater 43:141. doi:10.1016/S1359-6462(00)00383-3 CrossRefGoogle Scholar
  34. 34.
    Upmanyu M, Srolovitz DJ, Shvindlerman LS, Gottstein G (1998) Interface Sci 6:287Google Scholar
  35. 35.
    Hondros ED, Seah MP (1983) Physical metallurgy. In: Cahn RW, Haasen P (eds) 3rd edn. Elsevier Sci Pub BV, Netherlands, p 856 Google Scholar
  36. 36.
    Farber B, Cadel E, Menand A, Schmitz G, Kirchheim R (2000) Acta Mater 48:789. doi:10.1016/S1359-6454(99)00397-3 CrossRefGoogle Scholar
  37. 37.
    Liu KW, Mucklich F (2001) Acta Mater 49:395. doi:10.1016/S1359-6454(00)00340-2 CrossRefGoogle Scholar
  38. 38.
    Abe YR, Holzer JC, Johnson WL (1992) Mater Res Soc Symp Proc 238:721Google Scholar
  39. 39.
    Abe YR, Johnson WL (1992) Mater Sci Forum 88–90:513Google Scholar
  40. 40.
    Weissmuller J, Krauss W, Haubold T, Birringer R, Gleiter H (1992) NanoStructured Mater 1:439. doi:10.1016/0965-9773(92)90076-A CrossRefGoogle Scholar
  41. 41.
    Terwilliger CD, Chiang YM (1995) Acta Mater 43:319Google Scholar
  42. 42.
    Krill CE, Ehrhardt H, Birringer R (1997) Chemistry and physics of nanostructures and related non-equilibrium materials. In: Ma E, Fultz B, Shull R, Morral J, Nash P(eds) TMS, Warrendale, PA, pp 115–124Google Scholar
  43. 43.
    Krill CE, Klein R, Janes S, Birringer R (1995) Mater Sci Forum 179–181:443Google Scholar
  44. 44.
    Shapiro E, Wurschum R, Schaefer H-E, Ehrhardt H, Krill CE, Birringer R (2000) Mater Sci Forum 343–346:726Google Scholar
  45. 45.
    Krill CE, Ehrhardt H, Birringer R, Metallkd R (2005) 96:1134Google Scholar
  46. 46.
    De Boer FR, Boom R, Mattens WCM, Miedema AR, Niessen AK (1988) Cohesion in metals: transition metal alloys. North-Holland, Amsterdam, p 748Google Scholar
  47. 47.
    Okamoto H (ed) (2000) Phase diagrams for binary alloys. ASM International, Metals Park, OH, p 664Google Scholar
  48. 48.
    Darling KA, Chan RN, Wong PZ, Semones JE, Scattergood RO, Koch CC (2008) Scripta Materialia 59:530Google Scholar
  49. 49.
    Okamoto H (ed) (2000) Phase diagrams for binary alloys. ASM International, Metals Park, OH, p 380Google Scholar
  50. 50.
    Detor AJ, Schuh CA (2007) Acta Mater 55:371. doi:10.1016/j.actamat.2006.08.032 CrossRefGoogle Scholar
  51. 51.
    Detor AJ, Schuh CA (2007) Acta Mater 55:4221. doi:10.1016/j.actamat.2007.03.024 CrossRefGoogle Scholar
  52. 52.
    Okamoto H (ed) (2000) Phase diagrams for binary alloys. ASM International, Metals Park, OH, p 626Google Scholar
  53. 53.
    Detor AJ, Miller JK, Schuh CA (2006) Philos Mag 86:4459. doi:10.1080/14786430600726749 CrossRefADSGoogle Scholar
  54. 54.
    Detor AJ, Schuh CA (2007) J Mater Res 22:3233. doi:10.1557/jmr.2007.0403 CrossRefADSGoogle Scholar
  55. 55.
    Choi P, Da Silva M, Klement U, Al-Kassab T, Kirchheim R (2005) Acta Mater 53:4473. doi:10.1016/j.actamat.2005.06.006 CrossRefGoogle Scholar
  56. 56.
    Sun F, Zuniga A, Rojas P, Lavernia EJ (2006) Metall Mater Trans A 37A:2069. doi:10.1007/BF02586127 CrossRefGoogle Scholar
  57. 57.
    Darling KA, Semones JE, Scattergood RO, Koch CC (2008) Unpublished research, North Carolina State UniversityGoogle Scholar
  58. 58.
    Botcharova E, Freudenberger J, Schultz L (2006) Acta Mater 54:3333. doi:10.1016/j.actamat.2006.03.021 CrossRefGoogle Scholar
  59. 59.
    Benghalem A, Morris DG (1992) Scr Metall Mater 27:739. doi:10.1016/0956-716X(92)90498-4 CrossRefGoogle Scholar
  60. 60.
    Botcharova E, Freudenberger J, Schultz L (2004) J Alloy Comp 365:157. doi:10.1016/S0925-8388(03)00634-0 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • C. C. Koch
    • 1
  • R. O. Scattergood
    • 1
  • K. A. Darling
    • 1
  • J. E. Semones
    • 1
  1. 1.Materials Science and Engineering DepartmentNorth Carolina State UniversityRaleighUSA

Personalised recommendations