Advertisement

Journal of Materials Science

, Volume 43, Issue 17, pp 5942–5947 | Cite as

Effects of rolling and hot pressing on mechanical properties of boron carbide-based ceramics

  • Nina OrlovskayaEmail author
  • Sergey Yarmolenko
  • Jag Sankar
  • Jakob Kuebler
  • Mykola Lugovy
Article

Abstract

A study of hot pressed B4C-based laminates, after rolling and without rolling, has been performed to elucidate the existence of fracture resistance/crack length anisotropy induced by this processing technique. While the crack lengths/fracture resistance was affected significantly by the presence of the residual stresses in B4C/B4C–ZrB2 laminates, no differences in Vickers crack lengths were observed in B4C/B4C laminates prepared by rolling and hot pressing, as compared to the crack lengths seen in pure B4C ceramics prepared by hot pressing without rolling. X-ray diffraction analysis confirmed that no texture has been formed during the rolling and hot pressing of B4C ceramics.

Keywords

Fracture Toughness Crack Length Fracture Resistance Boron Carbide Thermal Residual Stress 

Notes

Acknowledgements

This work was supported by NSF project 0748364 “CAREER: Hard and tough boron rich ceramic laminates designed to contain thermal residual stresses,” the European Commission INCO-Copernicus Grant ICA2-CT-2000-10020 “LAMINATES,” Swiss Federal Office for Education and Science Grant BBW 99.0785, AFOSR, the project # F49620-02-0340, and NATO Collaborative Linkage Grant “Layered ceramic sensors for biological and chemical detection.”

References

  1. 1.
    Johnson GR, Holmquist TJ (1999) J Appl Phys 85:8060. doi: https://doi.org/10.1063/1.370643 CrossRefGoogle Scholar
  2. 2.
    Orphal DL, Franzen RR, Charters AC, Menna TL, Piekutowski AJ (1997) Int J Impact Eng 19:15. doi: https://doi.org/10.1016/S0734-743X(96)00004-8 CrossRefGoogle Scholar
  3. 3.
    Chen M, Mccauley JW, Hemker KJ (2003) Science 299:1563. doi: https://doi.org/10.1126/science.1080819 CrossRefGoogle Scholar
  4. 4.
    Bourne NK (2002) In: Proceedings of the Royal Society of London series A—mathematical, physical and engineering sciences, 458(2024), p 1999Google Scholar
  5. 5.
    Vogler TJ, Reinhart WD, Chabildas LC (2004) J Appl Phys 95:4173. doi: https://doi.org/10.1063/1.1686902 CrossRefGoogle Scholar
  6. 6.
    Niihara K, Nakahira A, Hirai T (1984) J Am Ceram Soc 67:13Google Scholar
  7. 7.
    Champagne B, Angers R (1979) J Am Ceram Soc 62:149. doi: https://doi.org/10.1111/j.1151-2916.1979.tb19042.x CrossRefGoogle Scholar
  8. 8.
    Yamada S, Sakaguchi S, Hirao K, Yamauchi Y, Kanzaki S (2003) J Ceram Soc Jpn 111:53. doi: https://doi.org/10.2109/jcersj.111.53 CrossRefGoogle Scholar
  9. 9.
    Thevenot F (1990) J Eur Ceram Soc 6:205. doi: https://doi.org/10.1016/0955-2219(90)90048-K CrossRefGoogle Scholar
  10. 10.
    Abzianidze TG, Eristavi AM, Shalamberidze SO (2000) J Solid State Chem 154:191. doi: https://doi.org/10.1006/jssc.2000.8834 CrossRefGoogle Scholar
  11. 11.
    Lee H, Speyer R (2002) J Am Ceram Soc 85:1291CrossRefGoogle Scholar
  12. 12.
    Orlovskaya N, Lugovy M, Ko F, Yarmolenko S, Sankar J, Kuebler J (2006) Compos B 37:524. doi: https://doi.org/10.1016/j.compositesb.2006.02.022 CrossRefGoogle Scholar
  13. 13.
    Orlovskaya N, Lugovy M, Kuebler J, Mechanical performance of 3 layered B4C/B4C-SiC laminates (in preparation)Google Scholar
  14. 14.
    Tariolle S, Reynaud C, Thevenot F, Chartier T, Besso JL (2004) J Solid State Chem 177:487. doi: https://doi.org/10.1016/j.jssc.2003.02.007 CrossRefGoogle Scholar
  15. 15.
    Mcclellan KJ, Chu F, Roper JM, Shindo I (2001) J Math Sci 36:3403. doi: https://doi.org/10.1023/A:1017947625784 CrossRefGoogle Scholar
  16. 16.
    Radchenko A, Subbotin V, Lugovy M, Orlovskaya N, Fracture toughness anisotropy of hot pressed silicon nitride (in preparation)Google Scholar
  17. 17.
    Orlovskaya N, Lugovy M, Subbotin V, Radchenko O, Adams J, Cheda M et al (2005) J Math Sci 40:5483. doi: https://doi.org/10.1007/s10853-005-1923-x CrossRefGoogle Scholar
  18. 18.
    Kakazey M, Vlasova M, Gonzalez-Rodriguez JG, Dominguez-Patino M, Leder R (2006) Mater Sci Eng A 418:111. doi: https://doi.org/10.1016/j.msea.2005.11.018 CrossRefGoogle Scholar
  19. 19.
    Tabor D (1951) Hardness of metals. Clarendon Press, OxfordGoogle Scholar
  20. 20.
    Antis GR, Chantikol P, Lawn BR, Marshall DB (1981) J Am Ceram Soc 64:533. doi: https://doi.org/10.1111/j.1151-2916.1981.tb10320.x CrossRefGoogle Scholar
  21. 21.
    European Standard EN 843-1, Advanced technical ceramics—Mechanical properties of monolithic ceramics at room temperature—Part 1: determination of flexural strength, December 2006Google Scholar
  22. 22.
    European Standard EN 843-2, Advanced technical ceramics—Mechanical properties of monolithic ceramics at room temperature—Part 2: determination Young’s modulus, shear strength and Poisson’s ratio, December 2006Google Scholar
  23. 23.
    Anselmi-Tamburini U, Ohyanagi M, Munir ZA (2004) Chem Mater 16:4347. doi: https://doi.org/10.1021/cm049195q CrossRefGoogle Scholar
  24. 24.
    Lemis-Petropoulos P, Kapaklis V, Peikrishvili AB, Politis C (2003) J Mod Phys B 17:2781. doi: https://doi.org/10.1142/S0217979203018582 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Nina Orlovskaya
    • 1
    Email author
  • Sergey Yarmolenko
    • 2
  • Jag Sankar
    • 2
  • Jakob Kuebler
    • 3
  • Mykola Lugovy
    • 4
  1. 1.University of Central FloridaOrlandoUSA
  2. 2.North Carolina A&T State UniversityGreensboroUSA
  3. 3.Material Science and TechnologyEMPADuebendorfSwitzerland
  4. 4.Institute for Problems of Materials ScienceKyivUkraine

Personalised recommendations