Advertisement

Journal of Materials Science

, Volume 43, Issue 17, pp 5898–5904 | Cite as

Two-step synthesis of polyacrylamide/poly(vinyl alcohol)/polyacrylamide/graphite interpenetrating network hydrogel and its swelling, conducting and mechanical properties

  • Shijun Fan
  • Qunwei Tang
  • Jihuai WuEmail author
  • De Hu
  • Hui Sun
  • Jianming Lin
Article

Abstract

Polyacrylamide/poly(vinyl alcohol)/polyacrylamide/graphite interpenetrating network (PAM/PVA/PAM/G IPN) hydrogel is synthesized using a simple two-step polymerization method. The swelling behaviors of the hydrogel depend on the PVA, graphite, and crosslinker dosages, and swelling process is dominated by a relaxation of macromolecule chains. Owing to IPN structure, the hydrogel shows a good mechanical strength and thermal stability. On the other hand, the incorporation of graphite improves the conductivity of the hydrogel.

Keywords

Polyaniline Vinyl Alcohol Crosslinker Concentration Macromolecule Chain Hybrid Agent 

Notes

Acknowledgements

The authors thanks the joint support by the National Natural Science Foundation of China (No. 50572030 and No. 50372022) and the Key Scientific Technology Program of Fujian, China (No. 2005HZ01-4 and No. 2004HZ01-3).

References

  1. 1.
    Buchholz F, Graham A (1997) Modern superabsorbent polymer technology. Wiley, New YorkGoogle Scholar
  2. 2.
    Fanta GF, Burr RC (1969) J Polym Sci 167:528Google Scholar
  3. 3.
    Weaver MO, Bagley EB, Fanta GF et al (1976) US Patent 3,981,100Google Scholar
  4. 4.
    Omidian H, Rocca JG, Park K (2005) J Control Release 102:3. doi: https://doi.org/10.1016/j.jconrel.2004.09.028 CrossRefGoogle Scholar
  5. 5.
    Ito K, Chuang J (2003) Prog Polym Sci 28:1489. doi: https://doi.org/10.1016/j.progpolymsci.2003.07.001 CrossRefGoogle Scholar
  6. 6.
    Lee WF, Chen YC (2005) Eur Polym J 41:1605. doi: https://doi.org/10.1016/j.eurpolymj.2005.02.011 CrossRefGoogle Scholar
  7. 7.
    Wu JH, Lan Z, Wang DB et al (2006) Electrochim Acta 51:4243. doi: https://doi.org/10.1016/j.electacta.2005.11.047 CrossRefGoogle Scholar
  8. 8.
    Abd El-Rehim HA (2005) Radiat Phys Chem 74:111. doi: https://doi.org/10.1016/j.radphyschem.2005.01.002 CrossRefGoogle Scholar
  9. 9.
    Wada H, Nohara S, Iwakura C (2004) Electrochim Acta 49:4871. doi: https://doi.org/10.1016/j.electacta.2004.05.041 CrossRefGoogle Scholar
  10. 10.
    Richter A, Howitz S, Kuckling D (2004) Sens Actuators B 99:451. doi: https://doi.org/10.1016/j.snb.2003.12.014 CrossRefGoogle Scholar
  11. 11.
    Li M, Guo Y, Wei Y et al (2006) Biomaterials 27:2705. doi: https://doi.org/10.1016/j.biomaterials.2005.11.037 CrossRefGoogle Scholar
  12. 12.
    Wu J, Lin J, Zhou M (2000) Macromol Rapid Commun 21:1032. doi:10.1002/1521-3927(20001001)21:15<1032::AID-MARC1032>3.0.CO;2-NCrossRefGoogle Scholar
  13. 13.
    Chen G, Weng W, Wu D et al (2004) Carbon 42:753. doi: https://doi.org/10.1016/j.carbon.2003.12.074 CrossRefGoogle Scholar
  14. 14.
    Yang S, Chen X, Motojima S et al (2005) Carbon 43:827. doi: https://doi.org/10.1016/j.carbon.2004.11.014 CrossRefGoogle Scholar
  15. 15.
    Jia S, Jiang P, Zhang Z, Wang Z (2006) Radiat Phys Chem 75:524. doi: https://doi.org/10.1016/j.radphyschem.2005.11.004 CrossRefGoogle Scholar
  16. 16.
    Zhang X, Zhang J, Liu Z (2005) Carbon 43:2186. doi: https://doi.org/10.1016/j.carbon.2005.03.034 CrossRefGoogle Scholar
  17. 17.
    Lin JM, Tang QW, Wu JH (2007) React Funct Polym 67:489. doi: https://doi.org/10.1016/j.reactfunctpolym.2007.02.002 CrossRefGoogle Scholar
  18. 18.
    Lin JM, Tang QW, Wu JH et al (2007) React Funct Polym 67:275. doi: https://doi.org/10.1016/j.reactfunctpolym.2007.01.011 CrossRefGoogle Scholar
  19. 19.
    Tang QW, Lin JM, Wu JH et al (2007) Carbohyd Polym 67:332. doi: https://doi.org/10.1016/j.carbpol.2006.05.026 CrossRefGoogle Scholar
  20. 20.
    Pissis P, Kyritsis A (1997) Solid State Ionics 97:105. doi: https://doi.org/10.1016/S0167-2738(97)00074-X CrossRefGoogle Scholar
  21. 21.
    Sun X, Liu G, Xie HY et al (2004) Solid State Ionics 175:713. doi: https://doi.org/10.1016/j.ssi.2003.11.043 CrossRefGoogle Scholar
  22. 22.
    Kaneko Y, Nakamura S, Sakai K (1998) Macromolecules 31:6099. doi: https://doi.org/10.1021/ma971899g CrossRefGoogle Scholar
  23. 23.
    Zhang J, Huang S, Xue Y, Zhuo R (2005) Macromol Rapid Commun 26:1346. doi: https://doi.org/10.1002/marc.200500298 CrossRefGoogle Scholar
  24. 24.
    Zhang X, Zhuo R (1999) Macromol Rapid Commun 20:229. doi:10.1002/(SICI)1521-3927(19990401)20:4<229::AID-MARC229>3.0.CO;2-NCrossRefGoogle Scholar
  25. 25.
    Kato N, Sakai Y, Shibata S (2003) Macromolecules 36:961. doi: https://doi.org/10.1021/ma0214198 CrossRefGoogle Scholar
  26. 26.
    Haraguchi K, Farnworth R, Ohbayashi A, Takehisa T (2003) Macromolecules 36:5732. doi: https://doi.org/10.1021/ma034366i CrossRefGoogle Scholar
  27. 27.
    Hou X, Siow KS (2001) Polymer (Guildf) 42:4181. doi: https://doi.org/10.1016/S0032-3861(00)00818-1 CrossRefGoogle Scholar
  28. 28.
    Gong J, Katsuyama Y, Kurokawa T, Osada Y (2003) Adv Mater 15:1155. doi: https://doi.org/10.1002/adma.200304907 CrossRefGoogle Scholar
  29. 29.
    Polnok A, Verhoef JC, Borchard G, Sarusyta N (2004) Int J Pharm 269:303. doi: https://doi.org/10.1016/j.ijpharm.2003.09.022 CrossRefGoogle Scholar
  30. 30.
    Yang ZW, Jiang YS, Xu LX, Wen B, Li FF, Sun SM, Hou TY (2005) J Mater Chem 15:1807. doi: https://doi.org/10.1039/b418015c CrossRefGoogle Scholar
  31. 31.
    McDermott MK, Chen TH, Williams CM et al (2004) Biomacromolecules 5:1270. doi: https://doi.org/10.1021/bm034529a CrossRefGoogle Scholar
  32. 32.
    Wu JH, Wei YL, Lin JM, Lin SB (2003) Polymer (Guildf) 44:6513. doi: https://doi.org/10.1016/S0032-3861(03)00728-6 CrossRefGoogle Scholar
  33. 33.
    Tang QW, Lin JM, Wu JH et al (2007) J Appl Polym Sci 104:735. doi: https://doi.org/10.1002/app.25531 CrossRefGoogle Scholar
  34. 34.
    Enscore DJ, Hopfraberg HB, Stannett VT (1977) Polymer (Guildf) 18:793. doi: https://doi.org/10.1016/0032-3861(77)90183-5 CrossRefGoogle Scholar
  35. 35.
    Zhang XZ, Zhou RX (2000) J Colloid Interface Sci 223:311. doi: https://doi.org/10.1006/jcis.1999.6654 CrossRefGoogle Scholar
  36. 36.
    Zhang XZ, Zhou RX, Yang Y (2002) Biomaterials 23:1313. doi: https://doi.org/10.1016/S0142-9612(01)00249-6 CrossRefGoogle Scholar
  37. 37.
    Tsukeshiba H, Huang M, Na YH et al (2005) J Phys Chem B 109:16304. doi: https://doi.org/10.1021/jp052419n CrossRefGoogle Scholar
  38. 38.
    Dispenza C, Lo Presti C, Belfiore C et al (2006) Polymer (Guildf) 47:961. doi: https://doi.org/10.1016/j.polymer.2005.12.071 CrossRefGoogle Scholar
  39. 39.
    Siddhanta SK, Gangopadhyay R (2005) Polymer (Guildf) 46:2993. doi: https://doi.org/10.1016/j.polymer.2005.01.084 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Shijun Fan
    • 1
  • Qunwei Tang
    • 1
  • Jihuai Wu
    • 1
    Email author
  • De Hu
    • 1
  • Hui Sun
    • 1
  • Jianming Lin
    • 1
  1. 1.The Key Laboratory of Functional Materials for Fujian Higher Education, Institute of Material Physical ChemistryHuaqiao UniversityQuanzhouChina

Personalised recommendations