Advertisement

Journal of Materials Science

, Volume 43, Issue 22, pp 7239–7246 | Cite as

On the relations between ISE and structure in some RE(Mg)SiAlO(N) glasses

  • R. DaucéEmail author
  • R. Keding
  • J.-C. Sangleboeuf
Article

Abstract

Six oxide and oxynitride glasses were synthesized in the Y–Mg–Si–Al–O–N, Nd–Mg–Si–Al–O–N and La–Mg–Si–Al–O–N systems. As already known, nitrogen introduction increases the Tg, packing factor and mechanical properties of the glasses. Cationic substitution also has an influence on the glasses’ behavior, particularly in terms of sensitivity to indentation load/size effect (ISE). The structure of the yttrium-containing glasses was investigated by mean of 27Al and 29Si MAS-NMR. Al is found to occur for 2/3 as a network former and for 1/3 as a modifier. The oxide glass mainly contains Q2 and Q3 silicate units and SiO3N and SiO2N2 units are created when nitrogen is introduced into the glass network. The average number of rigid bonds per network former \( \left\langle n \right\rangle \) was calculated from the glasses’ composition. A discrepancy between \( \left\langle n \right\rangle \) and the Raman spectra of the glasses suggests that parts of the magnesium behaves as a former in the network. \( \left\langle n \right\rangle \) seems to be a key parameter governing hardness and sensitivity to ISE and can be linked to normal/abnormal behavior of glasses regarding indentation.

Keywords

Oxynitride SiAlON Oxide Glass Cationic Substitution Energy Balance Model 

Notes

Acknowledgements

Part of this work was financed by a grant from the French atomic energy commission. The authors thank A. Moréac for the Raman spectra acquisition and M. Le Floch for the NMR spectra acquisition and help for the simulation, U. Schmidt and A. Völzke, Max Planck Institute CPFS, Dresden, Germany, for the ICP-OES analysis.

References

  1. 1.
    Leturcq G, Berger G, Advocat T, Vernaz E (1999) Chem Geol 160:39. doi: https://doi.org/10.1016/S0009-2541(99)00055-8 CrossRefGoogle Scholar
  2. 2.
    Guillopé S (1999) Thèse de l’Université de Rennes 1Google Scholar
  3. 3.
    Loehman RE (1979) J Am Ceram Soc 62(9–10):491. doi: https://doi.org/10.1111/j.1151-2916.1979.tb19113.x CrossRefGoogle Scholar
  4. 4.
    Sakka S, Kamiya K, Yoko T (1983) J Non-Cryst Solids 56:147CrossRefGoogle Scholar
  5. 5.
    Ramesh R, Nestor E, Pomeroy MJ, Hampshire S (1997) J Eur Ceram Soc 17:1933. doi: https://doi.org/10.1016/S0955-2219(97)00057-5 CrossRefGoogle Scholar
  6. 6.
    Rocherullé J, Ecolivet C, Poulain M, Verdier P, Laurent Y (1989) J Non-Cryst Solids 108:187CrossRefGoogle Scholar
  7. 7.
    Hampshire S, Drew RAL, Jack KH (1984) J Am Ceram Soc 67:C46Google Scholar
  8. 8.
    Makishima A, Mitomo M, Li N, Tsutsumi M (1983) J Am Ceram Soc C55Google Scholar
  9. 9.
    Pastuszak R, Verdier P (1983) J Non-Cryst Solids 56:141CrossRefGoogle Scholar
  10. 10.
    Hyatt MJ, Day DE (1987) J Am Ceram Soc 70(10):C283. doi: https://doi.org/10.1111/j.1151-2916.1987.tb04901.x CrossRefGoogle Scholar
  11. 11.
    Sakka S (1995) J Non-Cryst Solids 181:215CrossRefGoogle Scholar
  12. 12.
    Aujla RS, Leng-Ward G, Lewis MH, Seymour EFW, Styles GA (1986) Philos Magn B 54(2):51. doi: https://doi.org/10.1080/13642818608239002 CrossRefGoogle Scholar
  13. 13.
    Engelhardt G, Michel D (1987) High resolution solid-state NMR of silicates and zeolithes. Wiley, New York, pp 143–149Google Scholar
  14. 14.
    Jin J, Yoko T, Miyaji F, Sakka S, Fukunaga T, Misawa M (1994) Philos Magn 70:191. doi: https://doi.org/10.1080/01418639408241800 CrossRefGoogle Scholar
  15. 15.
    Kroeker S, Stebbins JF (2000) Am Miner 85:1459CrossRefGoogle Scholar
  16. 16.
    Utegulov ZN, Eastman MA, Prakabar S, Mueller KT, Hamad AY, Wicksted JP, Dixon GS (2003) J Non-Cryst Solids 315:43CrossRefGoogle Scholar
  17. 17.
    Mackenzie KJD, Meinhold RH (1994) J Mater Sci 4(10):1595Google Scholar
  18. 18.
    Kohli JT, Condrate RA, Shelby JE (1993) Phys Chem Glasses 34(3):81Google Scholar
  19. 19.
    Kohli JT, Shelby JE, Frye JS (1992) Phys Chem Glasses 33(3):73Google Scholar
  20. 20.
    McMillan P, Piriou B (1983) Bull Mineral 106:57Google Scholar
  21. 21.
    Schneider M, Gasparov VA, Richter W, Deckwerth M, Rüssel C (1997) J Non-Cryst Solids 215:201CrossRefGoogle Scholar
  22. 22.
    Videau JJ, Etourneau J, Garnier C, Verdier P, Laurent Y (1992) Mater Sci Eng 15:249. doi: https://doi.org/10.1016/0921-5107(92)90066-I CrossRefGoogle Scholar
  23. 23.
    Mackenzie KJD, Smith ME (2002) Multinuclear solid-state NMR of inorganic materials. PergamonGoogle Scholar
  24. 24.
    Unuma H, Maekawa H, Kiyono H, Kawamura K, Maekawa T, Yokokawa T (1992) J Ceram Soc Jpn 100(11):1292CrossRefGoogle Scholar
  25. 25.
    Frohlich F, Grau P, Grellmann W (1977) Phys Status Solidi 42(1):79. doi: https://doi.org/10.1002/pssa.2210420106 CrossRefGoogle Scholar
  26. 26.
    Bückle H (1960) Publications scientifiques et techniques du ministère de l’air, pp 115–121Google Scholar
  27. 27.
    Li H, Bradt RC (1992) J Non-Cryst Solids 146:197CrossRefGoogle Scholar
  28. 28.
    Quinn JB, Quinn GD (1997) J Mater Sci 32:4331. doi: https://doi.org/10.1023/A:1018671823059 CrossRefGoogle Scholar
  29. 29.
    Iost A, Bigot R (1996) J Mater Sci 31:3573. doi: https://doi.org/10.1007/BF00360764 CrossRefGoogle Scholar
  30. 30.
    De Graaf D, Braciszewicz M, Hintzen HT, Sopicka-Litzer M, De With G (2004) J Mater Sci 39:2145. doi: https://doi.org/10.1023/B:JMSC.0000017777.05637.a6 CrossRefGoogle Scholar
  31. 31.
    Marshall DB, Lawn BR, Evans AG (1982) J Am Ceram Soc 65(11):561. doi: https://doi.org/10.1111/j.1151-2916.1982.tb10782.x CrossRefGoogle Scholar
  32. 32.
    Hagan JT (1979) J Mater Sci 14:2975. doi: https://doi.org/10.1007/BF00611482 CrossRefGoogle Scholar
  33. 33.
    Lawn BR, Wilshaw R (1975) J Mater Sci 10:1049. doi: https://doi.org/10.1007/BF00823224 CrossRefGoogle Scholar
  34. 34.
    Lawn BR, Swain MV (1975) J Mater Sci 10:113. doi: https://doi.org/10.1007/BF00541038 CrossRefGoogle Scholar
  35. 35.
    Arora A, Marshall DB, Lawn BR, Swain MV (1979) J Non-Cryst Solids 31:415CrossRefGoogle Scholar
  36. 36.
    Shannon RD (1976) Acta Cryst A 32:751. doi: https://doi.org/10.1107/S0567739476001551 CrossRefGoogle Scholar
  37. 37.
    McMillan PW, Piriou B (1982) J Non-Cryst Solids 53:279CrossRefGoogle Scholar
  38. 38.
    Chen Z-X, McMillan PW (1984) Phys Chem Glasses 25(5):142Google Scholar
  39. 39.
    McMillan PF, Sato RK, Poe BT (1998) J Non-Cryst Solids 224:267CrossRefGoogle Scholar
  40. 40.
    Rocherullé J, Verdier P, Laurent Y (1989) Mater Sci Eng B2:265. doi: https://doi.org/10.1016/0921-5107(89)90002-0 CrossRefGoogle Scholar
  41. 41.
    Loehman RE (1983) J Non-Cryst Solids 56:123CrossRefGoogle Scholar
  42. 42.
    Schrimpf G, Frischat GH (1983) J Non-Cryst Solids 56:153CrossRefGoogle Scholar
  43. 43.
    Cai Y, Thorpe MF (1989) Phys Rev B 40(15):10535. doi: https://doi.org/10.1103/PhysRevB.40.10535 CrossRefGoogle Scholar
  44. 44.
    Thorpe MF (1983) J Non-Cryst Solids 57:355CrossRefGoogle Scholar
  45. 45.
    Thorpe MF (1995) J Non-Cryst Solids 182:135CrossRefGoogle Scholar
  46. 46.
    Avramov I, Keding R, Rüssel C (2000) Glastech Ber Glass Sci Technol 73(C1):138Google Scholar
  47. 47.
    Peter KW (1970) J Non-Cryst Solids 5:103CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.LARMAUR, FRE CNRS 2717Rennes CedexFrance
  2. 2.Chemistry and Environmental EngineeringAalborg UniversityAalborgDenmark

Personalised recommendations