Journal of Materials Science

, Volume 43, Issue 17, pp 5837–5844 | Cite as

Role of structure and morphology in the elastic modulus of carbon nanotube composites

  • Shiren WangEmail author


The nature of nanoscale reinforcements in the carbon nanotube composites indicates nanocomposite properties are heavily dependent on the micro/nano-structure and morphology. Macroscopic parameter-based properties estimation may lead to deviation as large as 30%. In this paper, a modified shear-lag model, combined with probability statistical theory and composites morphology, is established to investigate the elastic properties of single wall carbon nanotubes (SWNTs)-reinforced polymer composites. The computational results indicated that elastic modulus of nanocomposite was remarkably dependent on the micro/nano-structure, including diameter, length, and orientation of the dispersed SWNTs. Microstructure-dependent shape factor and orientation effect factor played a key role on achieving high-performance nanocomposites. Elastic modulus of nanocomposite with well-dispersed carbon nanotubes was more susceptible to the orientation. Similarly, nanocomposite modulus was more subject to the dispersion influence when SWNTs were well-aligned. The maximal modulus was located in the zone of small rope diameters and small orientation angles when adequate interfacial bonding was provided. The computational results were also compared with experimental outcome and demonstrated good consistence.


Orientation Angle Orientation Factor Alignment Angle Tube Loading Fiber Axial Stress 


  1. 1.
    Wong EW, Sheehan PE, Lieber CM (1997) Science 277:1971. doi: CrossRefGoogle Scholar
  2. 2.
    Bernholc J, Brenner D, Buongiorno Nardelli M, Meunier V, Roland C (2002) Annu Rev Mater Res 32:347. doi: CrossRefGoogle Scholar
  3. 3.
    Dujardin E, Webbesen TW, Krishan A, Yianilos PN, Trecy MMJ (1998) Phys Rev B 58:14013. doi: CrossRefGoogle Scholar
  4. 4.
    Lu J (1997) Phys Rev Lett 79:1297–1299. doi: CrossRefGoogle Scholar
  5. 5.
    Liu T, Kumar S (2003) Nano Lett 3:647. doi: CrossRefGoogle Scholar
  6. 6.
    Kong J, Soh HT, Cassell AM, Quate CF, Dai H (1998) Nature 395:878. doi: CrossRefGoogle Scholar
  7. 7.
    Yu MF, Files BS, Arepalli S, Ruoff RS (2000) Phys Rev Lett 84:5552. doi: CrossRefGoogle Scholar
  8. 8.
    Belytschko T, Xiao SP, Schatz GC, Ruoff RS (2002) Phys Rev B 65:235430. doi: CrossRefGoogle Scholar
  9. 9.
    Walters DA, Ericson LM, Casavant MJ, Liu J, Colbert DT, Smith KA et al (1999) Appl Phys Lett 74:3803. doi: CrossRefGoogle Scholar
  10. 10.
    Saito R, Fujita M, Dresselhaus G, Dresselhaus MS (1992) Appl Phys Lett 60:2204. doi: CrossRefGoogle Scholar
  11. 11.
    Dresselhaus MS, Dresselhaus G, Avouris P (2001) Carbon nanotubes: synthesis, structure, properties and applications, 1st edn. Springer Verlag, New YorkGoogle Scholar
  12. 12.
    Budiansky B (1965) J Mech Phys Solids 13:223. doi: CrossRefGoogle Scholar
  13. 13.
    Chow TS (1977) J Appl Phys 48:4072. doi: CrossRefGoogle Scholar
  14. 14.
    Russel WB (1973) Z Angew Math Phys 24:581. doi: CrossRefGoogle Scholar
  15. 15.
    Chou T-W, Nomura S, Taya M (1980) J Compos Mater 14:178. doi: CrossRefGoogle Scholar
  16. 16.
    Hashin Z (1968) J Compos Mater 2:284. doi: CrossRefGoogle Scholar
  17. 17.
    Laws N, McLaughlin R (1979) J Mech Phys Solids 27:1. doi: CrossRefGoogle Scholar
  18. 18.
    Benveniste Y (1987) Mech Mater 6:147. doi: CrossRefGoogle Scholar
  19. 19.
    Chen C-H, Cheng C-H (1996) Int J Solids Struct 33:2519. doi: CrossRefGoogle Scholar
  20. 20.
    Chow TS (1978) J Polym Sci Polym Phys 16:959. doi: CrossRefGoogle Scholar
  21. 21.
    Mori T, Tanaka K (1973) Acta Metall 21:571–574. doi: CrossRefGoogle Scholar
  22. 22.
    Halpin JC (1969) J Compos Mater 3:732CrossRefGoogle Scholar
  23. 23.
    Halpin JC, Kardos JL (1976) Polym Eng Sci 16:344. doi: CrossRefGoogle Scholar
  24. 24.
    Thostenson ET, Chou T-W (2003) J Phys D Appl Phys 36:573. doi: CrossRefGoogle Scholar
  25. 25.
    Ashrafi B, Hubert P (2006) Comp Sci Tech 66:387. doi: CrossRefGoogle Scholar
  26. 26.
    Jiang B, Liu C, Zhang C, Wang B, Wang Z (2007) Compos Part B 38:24. doi: CrossRefGoogle Scholar
  27. 27.
    Cox HL (1952) Br J Appl Phys 3:72. doi: CrossRefGoogle Scholar
  28. 28.
    Nayfeh AH (1977) Fibre Sci Tech 10:195. doi: CrossRefGoogle Scholar
  29. 29.
    McCartney LN (1992) Analytical models of stress transfer in unidirectional composites and cross-ply laminates, and their application to the prediction of matrix/transverse cracking. Proceedings of IUTAM Symposium, Blacksburg, VA, 1991, 251CrossRefGoogle Scholar
  30. 30.
  31. 31.
    Fukuda H, Kawata K (1974) Fiber Sci Tech 7:207. doi: CrossRefGoogle Scholar
  32. 32.
    Jayaraman K, Kortschot MT (1996) J Mater Sci 31:2059. doi: CrossRefGoogle Scholar
  33. 33.
    Kallmes O, Bernire G, Perez MA (1977) Pap Tech Ind 18:222Google Scholar
  34. 34.
    Fu SY, Lauke B (1998) Comp Sci Tech 58:389CrossRefGoogle Scholar
  35. 35.
    Wang S, Liang Z, Wang B, Zhang C (2006) Nanotechnology 17:634. doi: CrossRefGoogle Scholar
  36. 36.
    Kacir L, Narkis M, Ishai O (1975) Polym Eng Sci 15:525. doi: CrossRefGoogle Scholar
  37. 37.
    Salvetat JP, Andrew G, Briggs D, Bonard JM, Bacsa RR, Kulik AJ, Stöckli T, Burnham NA, Forró L (1999) Phys Rev Lett 82:944. doi: CrossRefGoogle Scholar
  38. 38.
    Shankar KR (2003) Department of Industrial Engineering, Master of Science thesis, Preparation and characterization of magnetically aligned carbon nanotubes buckypaper and compositesGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Industrial EngineeringTexas Tech UniversityLubbockUSA

Personalised recommendations