Advertisement

Journal of Materials Science

, Volume 43, Issue 19, pp 6531–6538 | Cite as

Thermal and mechanical properties of the açaí fiber/natural rubber composites

  • M. A. Martins
  • J. D. C. Pessoa
  • P. S. Gonçalves
  • F. I. Souza
  • L. H. C. MattosoEmail author
Article

Abstract

The açaí fruit industrial processing produces a large amount of waste, mainly seeds and fibers, which is a serious environmental and public health problem. The objective of this work was to use these fibers to obtain composites with natural rubber from different clones. The effect of the addition of açaí fibers and the type of clone were investigated using thermogravimetric analysis (TGA) under inert and oxidative atmospheres, differential scanning calorimetry (DSC), water sorption, and mechanical properties. The açaí fibers exhibited a thermal behavior comparable to other natural fibers industrially used in polymeric composites. The addition of the fibers did not influence the thermal stability of the composites. There was no significant effect of the type of clone and the addition of the fiber on the glass transition temperature, which was approximately −59 °C for all samples. Water sorption behavior of the compounds and of the composites was similar to that of the other materials with natural rubber that are reported in the literature. The promising performance of the composites with açaí fibers opens a new area of use for such fibers.

Keywords

Glass Transition Temperature Differential Scanning Calorimetry Curve Natural Rubber Natural Fiber Water Sorption 

Notes

Acknowledgement

The authors thank FAPESP and CNPq for their financial support.

References

  1. 1.
    Mokoena MA, Djokovic V, Luyt AS (2004) J Mater Sci 39(10):3403. doi: https://doi.org/10.1023/B:JMSC.0000026943.47803.0b CrossRefGoogle Scholar
  2. 2.
    Mishra S, Mohanty AK, Drzal LT, Misra M, Hinrichsen G (2004) Macromol Mater Eng 289(11):955. doi: https://doi.org/10.1002/mame.200400132 CrossRefGoogle Scholar
  3. 3.
    Thwe MM, Liao K (2003) J Mater Sci 38(2):363. doi: https://doi.org/10.1023/A:1021130019435 CrossRefGoogle Scholar
  4. 4.
    Bledzki AK, Gassan J (1999) Prog Polym Sci 24(2):221. doi: https://doi.org/10.1016/S0079-6700(98)00018-5 CrossRefGoogle Scholar
  5. 5.
    Bisanda ETN, Ansell MP (1992) J Mater Sci 27(6):1690. doi: https://doi.org/10.1007/BF00542934 CrossRefGoogle Scholar
  6. 6.
    da Costa HM, Visconde LLY, Nunes RCR, Furtado CRG (2002) J Appl Polym Sci 83(11):2331. doi: https://doi.org/10.1002/app.10125 CrossRefGoogle Scholar
  7. 7.
    Varghese S, Kuriakose B, Thomas S, Kosh AT (1994) J Adhes Sci Technol 8(3):235. doi: https://doi.org/10.1163/156856194X01086 CrossRefGoogle Scholar
  8. 8.
    Murty VM, De SK (1982) J Appl Polym Sci 27(12):4611. doi: https://doi.org/10.1002/app.1982.070271208 CrossRefGoogle Scholar
  9. 9.
    Geethamma VG, Mathew KT, Lakshminarayanan R, Thomas S (1998) Polymer (Guildf) 39(6–7):1483. doi: https://doi.org/10.1016/S0032-3861(97)00422-9 CrossRefGoogle Scholar
  10. 10.
    Kumar RP, Geethakumari Amma ML, Thomas S (1995) J Appl Polym Sci 58(3):597. doi: https://doi.org/10.1002/app.1995.070580315 CrossRefGoogle Scholar
  11. 11.
    Gallori S, Bilia AR, Bergonzi MC, Barbosa WLR, Vincieri FF (2004) Chromatographia 59(11–12):739. doi: https://doi.org/10.1365/s10337-004-0305-x Google Scholar
  12. 12.
    Del Pozo-Insfran D, Brenes CH, Talcott ST (2004) J Agric Food Chem 52(6):1539. doi: https://doi.org/10.1021/jf035189n CrossRefGoogle Scholar
  13. 13.
    Muñiz-Miret N, Vamos R, Hiraoka M, Montagnini F, Mendelsohn RO (1996) For Ecol Manage 87(1–3):163. doi: https://doi.org/10.1016/S0378-1127(96)03825-X CrossRefGoogle Scholar
  14. 14.
    Pacheco-Palencia LA, Hawken P, Talcott ST (2007) Food Res Int 40(5):620. doi: https://doi.org/10.1016/j.foodres.2006.11.006 CrossRefGoogle Scholar
  15. 15.
    Pacheco-Palencia LA, Hawken P, Talcott ST (2007) Food Chem 105(1):28. doi: https://doi.org/10.1016/j.foodchem.2007.03.027 CrossRefGoogle Scholar
  16. 16.
    Schauss AG, Wu X, Prior RL, Ou B, Patel D, Huang D et al (2006) J Agric Food Chem 54(22):8598. doi: https://doi.org/10.1021/jf060976g CrossRefGoogle Scholar
  17. 17.
    Coïsson JD, Travaglia F, Piana G, Capasso M, Arlorio M (2005) Food Res Int 38(8–9):893. doi: https://doi.org/10.1016/j.foodres.2005.03.009 CrossRefGoogle Scholar
  18. 18.
    Rodrigues RB, Lichtenthãler R, Zimmermann BF, Papagiannopoulos M, Fabricius H, Marx F (2006) J Agric Food Chem 54(12):4162. doi: https://doi.org/10.1021/jf058169p CrossRefGoogle Scholar
  19. 19.
    Rogez H (2000) Açaí: Preparação, composição e melhoramento da conservação, 1st edn. EDUFPA, BrazilGoogle Scholar
  20. 20.
    Gonçalves PS, Silva MA, Gouvêa LRL, Scaloppi EJ, Scaloppi EJ Jr (2006) Sci Agric 63(3):246. doi: https://doi.org/10.1590/S0103-90162006000300006 CrossRefGoogle Scholar
  21. 21.
    Menon ARR, Pillai CKS, Nando GB (1996) Polym Degrad Stabil 52(3):265. doi: https://doi.org/10.1016/0141-3910(96)00007-9 CrossRefGoogle Scholar
  22. 22.
    Mwaikambo LY, Ansell MP (1999) Angew Makromolekulare Chem 272(1):108. doi :10.1002/(SICI)1522-9505(19991201)272:1<108::AID-APMC108>3.0.CO;2-9CrossRefGoogle Scholar
  23. 23.
    Chand N, Sood S, Singh DK, Rohatgi PK (1987) J Therm Anal 32(2):595. doi: https://doi.org/10.1007/BF01912712 CrossRefGoogle Scholar
  24. 24.
    Martins MA, Joekes I (2003) J Appl Polym Sci 89(9):2507. doi: https://doi.org/10.1002/app.12285 CrossRefGoogle Scholar
  25. 25.
    Varma DS, Varma IK (1986) Thermochim Acta 108:199. doi: https://doi.org/10.1016/0040-6031(86)85092-4 CrossRefGoogle Scholar
  26. 26.
    Silva GG, de Souza DA, Machado JC, Hourston DJ (2000) J Appl Polym Sci 76(7):1197. doi :10.1002/(SICI)1097-4628(20000516)76:7<1197::AID-APP23>3.0.CO;2-GCrossRefGoogle Scholar
  27. 27.
    Mwaikambo LY, Ansell MP (2002) J Appl Polym Sci 84(12):2222. doi: https://doi.org/10.1002/app.10460 CrossRefGoogle Scholar
  28. 28.
    Li SD, Yu HP, Peng Z, Zhu CS, Li PS (2000) J Appl Polym Sci 75(11):1339. doi :10.1002/(SICI)1097-4628(20000314)75:11<1339::AID-APP3>3.0.CO;2-0CrossRefGoogle Scholar
  29. 29.
    de Medeiros ES, Moreno RMB, Ferreira FC, Alves N, Job AE, Gonçalves PS et al (2003) Prog Rubber Plast Recycl Technol 19(4):189CrossRefGoogle Scholar
  30. 30.
    Sircar AK (1997) J Therm Anal 49(1):293. doi: https://doi.org/10.1007/BF01987450 CrossRefGoogle Scholar
  31. 31.
    Brazier DW (1980) Rubber Chem Technol 53(3):437CrossRefGoogle Scholar
  32. 32.
    Sircar AK, Galaska ML, Rodrigues S, Chartoff RP (1999) Rubber Chem Technol 72(3):513CrossRefGoogle Scholar
  33. 33.
    Sreekala MS, Kumaran MG, Thomas S (2002) Comp Part A Appl Sci Manuf 33(6):763. doi: https://doi.org/10.1016/S1359-835X(02)00032-5 CrossRefGoogle Scholar
  34. 34.
    Geethamma VG, Thomas S (2005) Polym Comp 26(2):136. doi: https://doi.org/10.1002/pc.20086 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • M. A. Martins
    • 1
    • 2
  • J. D. C. Pessoa
    • 2
  • P. S. Gonçalves
    • 1
  • F. I. Souza
    • 3
  • L. H. C. Mattoso
    • 4
    Email author
  1. 1.Agronomic InstituteCampinasBrazil
  2. 2.Embrapa Agricultural InstrumentationSão CarlosBrazil
  3. 3.Embrapa Eastern AmazonBelémBrazil
  4. 4.National Nanotechnology Laboratory for Agribuseness (LNNA), Embrapa Agricultural InstrumentationSão CarlosBrazil

Personalised recommendations