Advertisement

Journal of Materials Science

, Volume 43, Issue 17, pp 5851–5860 | Cite as

Stiffness and energy dissipation in polyurethane auxetic foams

  • Matteo Bianchi
  • Fabrizio L. Scarpa
  • Christopher W. SmithEmail author
Article

Abstract

Auxetic open cell polyurethane (PU) foams have been manufactured and mechanically characterised under cyclic tensile loading. The classical manufacturing process for auxetic PU foams involves multiaxial compression of the conventional parent foam, and heating of the compressed specimens above the Tm of the foam polymer. Eighty cylindrical specimens were fabricated using manufacturing routes modified from those in the open literature, with different temperatures (135 °C, 150 °C), compression ratios and different cooling methods (water or room temperature exposure). Compressive tensile cyclic loading has been applied to measure tangent modulus, Poisson’s ratios and energy dissipated per unit volume. The results are used to obtain relations between manufacturing parameters, mechanical and hysteresis properties of the foams. Compression, both radial and axial, was found to be the most significant manufacturing parameter for the auxetic foams in this work.

Keywords

Foam Tangent Modulus Initial Diameter Linear Little Square Open Cell Foam 

Notes

Acknowledgement

The authors wish to express their gratitude to the anonymous reviewers for their useful comments.

References

  1. 1.
  2. 2.
  3. 3.
    Evans KE, Nkansah MA, Hutchinson IJ (1991) Nature 353:124. doi: https://doi.org/10.1038/353124a0 CrossRefGoogle Scholar
  4. 4.
    Herakovich CT (1984) J Compos Mater 18(5):447. doi: https://doi.org/10.1177/002199838401800504 CrossRefGoogle Scholar
  5. 5.
    Clarke JF, Duckett RA, Hine PJ, Hutchinson IJ, Ward IM (1994) Composites 25(9):863. doi: https://doi.org/10.1016/0010-4361(94)90027-2 CrossRefGoogle Scholar
  6. 6.
    Evans KE, Donoghue JP, Alderson KL (2004) J Compos Mater 38(2):95. doi: https://doi.org/10.1177/0021998304038645 CrossRefGoogle Scholar
  7. 7.
    Evans KE, Alderson KL (1992) J Mater Sci Lett 11(24):573. doi: https://doi.org/10.1007/BF00736221 CrossRefGoogle Scholar
  8. 8.
    Alderson KL, Fitzgerald A, Evans KE (2000) J Mater Sci 35(16):1573. doi: https://doi.org/10.1023/A:1004830103411 CrossRefGoogle Scholar
  9. 9.
    Abdel-Sayed FK, Jones R, Burgens IW (1979) Composites 10:279Google Scholar
  10. 10.
    Masters IG, Evans KE (1996) Compos Struct 35:403. doi: https://doi.org/10.1016/S0263-8223(96)00054-2 CrossRefGoogle Scholar
  11. 11.
    Scarpa F, Panayiotou P, Tomlinson G (2000) J Strain Anal 35(5):383. doi: https://doi.org/10.1243/0309324001514152 CrossRefGoogle Scholar
  12. 12.
    Prall D, Lakes R (1996) Int J Mech Sci 39(3):305. doi: https://doi.org/10.1016/S0020-7403(96)00025-2 CrossRefGoogle Scholar
  13. 13.
    Scarpa F, Blain S, Lew T, Perrott D, Ruzzene M, Yates JR (2007) Compos A Appl Sci Manuf 38(2):280. doi: https://doi.org/10.1016/j.compositesa.2006.04.007 CrossRefGoogle Scholar
  14. 14.
    Friis EA, Lakes RS, Park JB (1988) J Mater Sci 23:4406. doi: https://doi.org/10.1007/BF00551939 CrossRefGoogle Scholar
  15. 15.
    Lakes RS, Elms K (1993) J Compos Mater 27:1193. doi: https://doi.org/10.1177/002199839302701203 CrossRefGoogle Scholar
  16. 16.
    Chen CP, Lakes RS (1989) Cell Polym 8(5):343Google Scholar
  17. 17.
    Lakes RS (1992) Cell Polym 11:466Google Scholar
  18. 18.
    Howell B, Prendergast P, Hansen L (1994) Appl Acoust 43(2):141. doi: https://doi.org/10.1016/0003-682X(94)90057-4 CrossRefGoogle Scholar
  19. 19.
    Scarpa F, Ciffo LG, Yates JR (2004) Smart Mater Struct 13(1):49. doi: https://doi.org/10.1088/0964-1726/13/1/006 CrossRefGoogle Scholar
  20. 20.
    Chan N, Evans KE (1997) J Mater Sci 32(22):5945. doi: https://doi.org/10.1023/A:1018606926094 CrossRefGoogle Scholar
  21. 21.
    Gaspar N, Smith CW, Miller EA, Seidler GT, Evans KE (2005) Phys Status Solidi B 242(3):550. doi: https://doi.org/10.1002/pssb.200460375 CrossRefGoogle Scholar
  22. 22.
    Scarpa F, Pastorino P, Garelli A, Patsias S, Ruzzene M (2005) Phys Status Solidi B 242(3):681. doi: https://doi.org/10.1002/pssb.200460386 CrossRefGoogle Scholar
  23. 23.
    Scarpa F, Yates JR, Ciffo LG (2002) Proc Inst Mech Eng C J Mech Sci 216(12):1153CrossRefGoogle Scholar
  24. 24.
    Bezazi A, Scarpa F (2007) Int J Fatigue 29(7):922. doi: https://doi.org/10.1016/j.ijfatigue.2006.07.015 CrossRefGoogle Scholar
  25. 25.
    Lakes RS (1998) Viscoelastic solids. CRC Press, Boca Raton, FLGoogle Scholar
  26. 26.
    Smith CW, Wootton RJ, Evans KE (1999) Exp Mech 39(4):356. doi: https://doi.org/10.1007/BF02329817 CrossRefGoogle Scholar
  27. 27.
    Taylor JR (1997) An introduction to error analysis, 2nd edn. University Science Books, Sausolito, pp 166–168Google Scholar
  28. 28.
    Smith CW, Lehman F, Wootton RJ, Evans KE (1999) Cell Polym 18(2):79Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Matteo Bianchi
    • 1
  • Fabrizio L. Scarpa
    • 1
  • Christopher W. Smith
    • 2
    Email author
  1. 1.Department of Aerospace EngineeringUniversity of BristolBristolUK
  2. 2.School of Engineering, Computing and MathematicsUniversity of ExeterExeterUK

Personalised recommendations