Journal of Materials Science

, Volume 43, Issue 16, pp 5534–5539 | Cite as

Synthesis and characterization of a polyaniline/HTiNbO5 lamellar hybrid nanocomposite

  • Juanjuan MaEmail author
  • Xiaobo Zhang
  • Chong Yan
  • Zhiwei Tong
  • Haruo Inoue


Polyaniline (PANI)/HTiNbO5 lamellar hybrid nanocomposite was synthesized by the intercalation of aniline monomer into the layer structure of HTiNbO5 followed by the subsequent in situ polymerization of aniline in the interlayer spacings. The synthesis process, the structure and morphology characterizations for lamellar hybrid nanocomposite were investigated by means of XRD, FTIR, TG–DTA, and SEM. Based on the experimental results, a detailed description of the conformation of polyaniline chains within the confined galleries of the inorganic host material was presented. TG analysis showed improved thermal stability for the intercalated nanocomposite in comparison with the pure PANI. Electrochemical studies indicated that the nanocomposite exhibited good redox activity and electrochemical-cycling stability.


PANI Aniline Glassy Carbon Electrode Layered Compound Pure PANI 



This work was supported by a grant-in-aid for Scientific Research from the Japan Society for the Promotion of Science (JSPS) and the CREST program of the Japan Science and Technology Agency (JST). The authors are also grateful to young and middle aged academic leaders of Jiangsu Province universities’ “blue and green blue project”.


  1. 1.
    Jia W, Segal E, Kornemandel D, Lamhot Y, Narkis M, Siegmann A (2002) Synth Met 128:115. doi: CrossRefGoogle Scholar
  2. 2.
    Belanger D, Ren XM, Davey J, Uribe F, Gottesfeld S (2000) J Electrochem Soc 147:2923. doi: CrossRefGoogle Scholar
  3. 3.
    Huang JX, Virji S, Weiller BH, Kaner RB (2003) J Am Chem Soc 125:314. doi: CrossRefGoogle Scholar
  4. 4.
    Huang SC, Ball IJ, Kaner RB (1998) Macromolecules 31:5456. doi: CrossRefGoogle Scholar
  5. 5.
    de Farias RF, Airoldi C (2003) Solid State Sci 5:611. doi: CrossRefGoogle Scholar
  6. 6.
    Posudievsky OY, Biskulova SA, Pokhodenko VD (2002) J Mater Chem 12:1446. doi: CrossRefGoogle Scholar
  7. 7.
    Pang SP, Li GC, Zhang ZK (2005) Macromol Rapid Commun 26:1262. doi: CrossRefGoogle Scholar
  8. 8.
    Wu CG, DeGroot DC, Marcy HO, Schindler JL, Kannewurf CR, Liu YJ et al (1996) Chem Mater 8:1992. doi: CrossRefGoogle Scholar
  9. 9.
    Wu CG, Degroot DC, Marcy HO, Schindler JL, Kannewurf CR, Bakas T et al (1995) J Am Chem Soc 117:9229. doi: CrossRefGoogle Scholar
  10. 10.
    Wu Q, Xue Z, Qi Z, Wang F (2000) Polymer (Guildf) 41:2029. doi: CrossRefGoogle Scholar
  11. 11.
    Kim BH, Jung JH, Hong SH, Joo J, Epstein AJ, Mizoguchi K et al (2002) Macromolecules 35:1419. doi: CrossRefGoogle Scholar
  12. 12.
    Lee D, Char K, Lee SW, Park YW (2003) J Mater Chem 13:2942. doi: CrossRefGoogle Scholar
  13. 13.
    Prasad GK, Takei T, Yonesaki Y, Kumada N, Kinomura N (2006) Mater Lett 60:3727. doi: CrossRefGoogle Scholar
  14. 14.
    Inui Y, Yui T, Itoh T, Higuchi K, Seki T, Takagi K (2007) J Phys Chem B 111:12162. doi: CrossRefGoogle Scholar
  15. 15.
    Sasaki T, Ebina Y, Kitami Y, Watanabe M, Oikawa T (2001) J Phys Chem B 105:6116. doi: CrossRefGoogle Scholar
  16. 16.
    Nakato T, Miyamoto N (2002) J Mater Chem 12:1245. doi: CrossRefGoogle Scholar
  17. 17.
    Du GH, Yu Y, Chen Q, Wang RH, Zhou W, Peng LM (2003) Chem Phys Lett 377:445. doi: CrossRefGoogle Scholar
  18. 18.
    Tong ZW, Shichi T, Takagi K (2002) J Phys Chem B 106:13306. doi: CrossRefGoogle Scholar
  19. 19.
    Tong ZW, Shichi T, Oshika K, Takagi K (2002) Chem Lett 31:876. doi: CrossRefGoogle Scholar
  20. 20.
    Tsotcheva D, Tsanov T, Terlemezyan L, Vassilev S (2000) J Therm Anal Calorim 63:133. doi: CrossRefGoogle Scholar
  21. 21.
    Yoshimoto S, Ohashi F, Kameyama T (2005) J Polym Sci Pt B Polym Phys 43:2705. doi: CrossRefGoogle Scholar
  22. 22.
    Prasad PN, Mark JE, Ting JF (1995) Polymers and other advanced materials emerging technologies and business opportunities. Plenum Press, New YorkCrossRefGoogle Scholar
  23. 23.
    Lee D, Char K (2002) Polym Degrad Stabil 75:555. doi: CrossRefGoogle Scholar
  24. 24.
    Prasad KR, Munichandraiah N (2002) Synth Met 126:61. doi: CrossRefGoogle Scholar
  25. 25.
    Tian SJ, Baba A, Liu JY, Wang ZH, Knoll W, Park MK et al (2003) Adv Funct Mater 13:473. doi: CrossRefGoogle Scholar
  26. 26.
    Tian SJ, Liu JY, Zhu T, Knoll W (2004) Chem Mater 16:4103. doi: CrossRefGoogle Scholar
  27. 27.
    Liu JY, Tian SJ, Knoll W (2005) Langmuir 21:5596. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Juanjuan Ma
    • 1
    • 2
    Email author
  • Xiaobo Zhang
    • 1
  • Chong Yan
    • 1
  • Zhiwei Tong
    • 1
    • 3
  • Haruo Inoue
    • 3
    • 4
  1. 1.Department of Chemical EngineeringHuaihai Institute of TechnologyLianyungangPeople’s Republic of China
  2. 2.Key Laboratory of Soft Chemistry and Functional Materials, Ministry of EducationNanjing University of Science and TechnologyNanjingPeople’s Republic of China
  3. 3.SORST, Japan Science and Technology (JST) TokyoJapan
  4. 4.Department of Applied Chemistry, Graduate Course of EngineeringTokyo Metropolitan UniversityHachioji CityJapan

Personalised recommendations