Advertisement

Journal of Materials Science

, Volume 43, Issue 16, pp 5489–5494 | Cite as

Physiochemical characterizations of nanobelts consisting of three mixed oxides (Co3O4, CuO, and MnO2) prepared by electrospinning technique

  • Muzafar A. Kanjwal
  • Nasser A. M. Barakat
  • Faheem A. Sheikh
  • Myung Seob Khil
  • Hak Yong KimEmail author
Article

Abstract

In this work, nanobelt mats consisting of three potential metal oxides have been produced using the electrospinning technique. An aqueous solution of cobalt acetate tetra-hydrate, copper acetate mono-hydrate, and manganese acetate tetra-hydrate was mixed with poly(vinyl alcohol) solution to prepare a sol–gel which was electrospun at 20 kV. The obtained nanofiber mats have been vacuously dried at 80 °C for 24 h and then calcined in air atmosphere at different temperatures and soaking times. The utilized physiochemical characterizations have affirmed that nanobelts composed of three oxides (Co3O4, CuO, and MnO2) can be prepared by calcination at a temperature of 600 °C for 1 h. High-resolution transmission electron microscope and selected area electron pattern images revealed good crystallinity for the synthesized nanobelts.

Keywords

MnO2 Co3O4 Thermal Gravimetric Analysis Cupric Oxide Acetate Anion 

Notes

Acknowledgement

This work was supported by Korean Research Foundation Grant founded by Korean Government (MOEHRD). (The Center for Health Care Technology, Chonbuk National University, Jeonju 561-756, Republic of Korea.)

References

  1. 1.
    Cavicchi RE, Silsbe RH (1984) Phys Rev Lett 52:1435. doi: https://doi.org/10.1103/PhysRevLett.52.1453 CrossRefGoogle Scholar
  2. 2.
    Ball P, Li G (1992) Nature 355(6363):761. doi: https://doi.org/10.1038/355761a0 CrossRefGoogle Scholar
  3. 3.
    Lieber CM (2003) MRS Bull 28(7):486CrossRefGoogle Scholar
  4. 4.
    Xia YN, Yang PD (2003) Adv Mater 15(5):351. doi: https://doi.org/10.1002/adma.200390086 CrossRefGoogle Scholar
  5. 5.
    Sander MS, Prieto AL, Gronsky R, Sands T, Stacy AM (2002) Adv Mater 14(9):665. doi:10.1002/1521-4095(20020503)14:9<665::AID-ADMA665>3.0.CO;2-BCrossRefGoogle Scholar
  6. 6.
    Dai HQ, Gong J, Kim HY, Lee D (2002) Nanotechnology 13(5):674. doi: https://doi.org/10.1088/0957-4484/13/5/327 CrossRefGoogle Scholar
  7. 7.
    Dharmaraj N, Kim CK, Prabu P, Ding B, Kim HY, Viswanathamurthi P (2007) Int J Electrospun Nanofibers Appl 1(1):63Google Scholar
  8. 8.
    Yuh JH, Nino JC, Sigmund WM (2005) Mater Lett 59(28):3645. doi: https://doi.org/10.1016/j.matlet.2005.07.008 CrossRefGoogle Scholar
  9. 9.
    Ju YW, Park JH, Jung HR, Choa SJ, Lee WJ (2008) Mater Sci Eng B 147(1):7. doi: https://doi.org/10.1016/j.mseb.2007.10.018 CrossRefGoogle Scholar
  10. 10.
    Peng XS, Meng GW, Wang XF, Wang YW, Zhang J, Liu X et al (2002) Chem Mater 14(11):4490. doi: https://doi.org/10.1021/cm025567o CrossRefGoogle Scholar
  11. 11.
    Zhou XF, Zhao Y, Cao X, Xue YF, Xu DP, Jiang L et al (2008) Mater Lett 62(3):470. doi: https://doi.org/10.1016/j.matlet.2007.05.063 CrossRefGoogle Scholar
  12. 12.
    Shaoa CL, Yua N, Liu YC, Mu RX (2006) J Phys Chem Solids 67(7):1423. doi: https://doi.org/10.1016/j.jpcs.2006.01.104 CrossRefGoogle Scholar
  13. 13.
    Yu N, Shao CL, Liu YC, Guan HY, Yang XH (2005) J Colloid Interface Sci 285(1):163. doi: https://doi.org/10.1016/j.jcis.2004.11.014 CrossRefGoogle Scholar
  14. 14.
    Yamaura H, Tamaki J, Moriya K, Miura N, Yamazoe N (1997) J Electrochem Soc 144(6):L158. doi: https://doi.org/10.1149/1.1837710 CrossRefGoogle Scholar
  15. 15.
    Ando M, Kobayashi T, Lijima S, Haruta M (1997) J Mater Chem 7(9):1779. doi: https://doi.org/10.1039/a700125h CrossRefGoogle Scholar
  16. 16.
    Nkeng P, Koening J, Gautier J, Chartier P, Poillerat G (1996) J Electroanal Chem 402(1–2):81. doi: https://doi.org/10.1016/0022-0728(95)04254-7 CrossRefGoogle Scholar
  17. 17.
    Weichel S, Moller P (1998) J Surf Sci 399(2–3):219. doi: https://doi.org/10.1016/S0039-6028(97)00820-0 CrossRefGoogle Scholar
  18. 18.
    Burke LD, Lyons ME, Murphy OJ (1982) J Electroanal Chem 132:247. doi: https://doi.org/10.1016/0022-0728(82)85022-5 CrossRefGoogle Scholar
  19. 19.
    Hutchins MG, Wright PJ, Grebenik PD (1987) Sol Energy Mater 16(1–3):113. doi: https://doi.org/10.1016/0165-1633(87)90013-X CrossRefGoogle Scholar
  20. 20.
    Ramachandram K, Oriakhi CO, Lerner MM, Koch VR (1996) Mater Res Bull 31(7):767. doi: https://doi.org/10.1016/0025-5408(96)00070-0 CrossRefGoogle Scholar
  21. 21.
    Podhajecky P, Scrosati B (1985) J Power Sources 16(4):309. doi: https://doi.org/10.1016/0378-7753(85)80095-1 CrossRefGoogle Scholar
  22. 22.
    Muhibbullah M, Hakim MO, Choudhury MGM (2003) Thin Solid Films 423(1):103. doi: https://doi.org/10.1016/S0040-6090(02)00970-7 CrossRefGoogle Scholar
  23. 23.
    Ortiz JR, Ogura T, Medina-Valtierra J, Acosta-Ortiz SE, Bosh P, de los Reyes JA et al (2001) Appl Surf Sci 174(3–4):177. doi: https://doi.org/10.1016/S0169-4332(00)00822-9 CrossRefGoogle Scholar
  24. 24.
    Kharas KCC (1993) Appl Catal B Environ 2(2–3):207. doi: https://doi.org/10.1016/0926-3373(93)80049-J CrossRefGoogle Scholar
  25. 25.
    Vasiliev RB, Rumyantseva MN, Yakovlev NV, Gaskov AM (1998) Sens Actuators B Chem 50(3):186. doi: https://doi.org/10.1016/S0925-4005(98)00235-4 CrossRefGoogle Scholar
  26. 26.
    Nakamura Y, Zhuang H, Kishimoto A, Okada O, Yanagida H (1998) J Electrochem Soc 145:632. doi: https://doi.org/10.1149/1.1838315 CrossRefGoogle Scholar
  27. 27.
    Kim DW, Park B, Chung JH, Hong KS (2000) Jpn J Appl Phys 39(5A):2696. doi: https://doi.org/10.1143/JJAP.39.2696 CrossRefGoogle Scholar
  28. 28.
    Reddy RN, Reddy RG (2004) J Power Sources 132(1–2):315. doi: https://doi.org/10.1016/j.jpowsour.2003.12.054 CrossRefGoogle Scholar
  29. 29.
    Toupin M, Brousse T, Belanger D (2004) Chem Mater 16(16):3184. doi: https://doi.org/10.1021/cm049649j CrossRefGoogle Scholar
  30. 30.
    Subramanian V, Zhu H, Vajtai R, Ajayan PM, Wei B (2005) J Phys Chem B 109(43):20207. doi: https://doi.org/10.1021/jp0543330 CrossRefGoogle Scholar
  31. 31.
    Chaudhary YS, Agrawal A, Shrivastav R, Satsangi VR, Dass S (2004) Int J Hydrogen Energy 29(2):131. doi: https://doi.org/10.1016/S0360-3199(03)00109-5 CrossRefGoogle Scholar
  32. 32.
    Yoon KH, Choi WJ, Kang DH (2000) Thin Solid Films 372(1–2):250. doi: https://doi.org/10.1016/S0040-6090(00)01058-0 CrossRefGoogle Scholar
  33. 33.
    Yamani Z, Buyers WJL, Cowley RA, Prabhakaran D (2008) Physica B 403(5–9):1406CrossRefGoogle Scholar
  34. 34.
    Li T, Yang SG, Huang LS, Gu BX, Du YW (2004) Nanotechnology 15(11):1479. doi: https://doi.org/10.1088/0957-4484/15/11/018 CrossRefGoogle Scholar
  35. 35.
    Jiang Y, Wu Y, Xie B, Xie Y, Qian YT (2002) Mater Chem Phys 74(2):234. doi: https://doi.org/10.1016/S0254-0584(01)00463-1 CrossRefGoogle Scholar
  36. 36.
    Afzal M, Butt PK, Ahrnad H (1991) J Therm Anal 37(5):1015. doi: https://doi.org/10.1007/BF01932799 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Muzafar A. Kanjwal
    • 1
  • Nasser A. M. Barakat
    • 2
  • Faheem A. Sheikh
    • 2
  • Myung Seob Khil
    • 3
  • Hak Yong Kim
    • 3
    Email author
  1. 1.Department of Polymer Nano Science and TechnologyChonbuk National UniversityJeonjuRepublic of Korea
  2. 2.Department of Bionano System Engineering, College of EngineeringChonbuk National UniversityJeonjuRepublic of Korea
  3. 3.Department of Textile EngineeringChonbuk National UniversityJeonjuRepublic of Korea

Personalised recommendations