Advertisement

Journal of Materials Science

, Volume 43, Issue 16, pp 5495–5503 | Cite as

XPS study of the initial oxidation of the bulk metallic glass Zr46.75Ti8.25Cu7.5Ni10Be27.5

  • S. K. SharmaEmail author
  • T. Strunskus
  • H. Ladebusch
  • V. Zaporojtchenko
  • F. Faupel
Article

Abstract

The surface oxidation behaviour of the bulk metallic glass Zr46.75Ti8.25Cu7.5Ni10Be27.5 was investigated in situ by using X-ray photoelectron spectroscopy (XPS). The initial stages of oxidation at room temperature were studied by exposing the clean alloy specimen surface to varying doses of pure oxygen (up to 1,000 L) in an UHV chamber. Progressive oxidation of Zr, Be and Ti was observed with increasing doses, the major species in the oxide layer being Zr(IV) and Be(II) possibly existing as ZrO2, BeO, while Cu and Ni remained in their elemental forms. High temperature in situ oxidation in the temperature range 423–653 K for a fixed oxygen dose of 300 L was also investigated. Oxidation of Be was observed at all temperatures, while a sharp decrease in the oxidation of Zr and Ti was observed for temperatures at 573 K and above. The results show a preferential oxidation of Be and Zr at room temperature, while at higher temperatures oxidation is controlled by the reduction of oxides of Zr and Ti and the diffusion of oxygen into the alloy bulk. The role of the dissolved carbon impurity in the reduction of the oxides is discussed.

Keywords

Amorphous Alloy Bulk Metallic Glass Carbon Impurity Bulk Amorphous Alloy Supercooled Liquid Region 

Notes

Acknowledgement

S.K.S. would like to gratefully acknowledge the invitation and the financial support received from the Lehrstuhl für Materialverbunde, Technische Fakultät der Universität Kiel for working as a Visiting Scientist during the course of this work.

References

  1. 1.
    Zhang T, Inoue A, Masumoto T (1991) Mater Trans JIM 32:1505Google Scholar
  2. 2.
    Peker A, Johnson WL (1993) Appl Phys Lett 63:2342. doi: https://doi.org/10.1063/1.110520 CrossRefGoogle Scholar
  3. 3.
    Hashimoto K (1983) In: Luborsky FE (ed) Amorphous metallic alloys. Butterworths, London, p 471CrossRefGoogle Scholar
  4. 4.
    Baiker A, Schlögl R, Armbruster E, Güntherodt H-J (1987) J Catal 107:221. doi: https://doi.org/10.1016/0021-9517(87)90287-9 CrossRefGoogle Scholar
  5. 5.
    Yamashita H, Yoshikawa M, Funabiki T, Yoshida S (1987) J Chem Soc Faraday Trans 83:2883. doi: https://doi.org/10.1039/f19878302883 CrossRefGoogle Scholar
  6. 6.
    Johnson WL (1994) Mater Sci Technol 9:94CrossRefGoogle Scholar
  7. 7.
    Sen P, Sarma DD, Budhani RC, Chopra KL, Rao CNR (1984) J Phys F14:565CrossRefGoogle Scholar
  8. 8.
    Wang XK, Shen NF, Yang ZS, Gu HC (1995) J Mater Sci Lett 14:1742CrossRefGoogle Scholar
  9. 9.
    Asami K, Kimura HM, Hashimoto K, Masumoto T (1995) Mater Trans JIM 36:988CrossRefGoogle Scholar
  10. 10.
    WALZ B, Oelhafen P, Güntherodt H-J, Baiker A (1989) Appl Surf Sci 37:337CrossRefGoogle Scholar
  11. 11.
    Song Z, Bao X, Wild U, Muhler M, Ertl G (1999) Appl Surf Sci 134:31CrossRefGoogle Scholar
  12. 12.
    Schneider S, Sun X, Nicolet M-A, Johnson WL (1995) In: Otooni MA (ed) Science and technology of rapid solidification and processsing. Kluwer Academic Publishers, The Netherlands, p 317Google Scholar
  13. 13.
    Sun X, Schneider S, Geyer U, Johnson WL, Nicolet M-A (1996) J Mater Res 11:2738CrossRefGoogle Scholar
  14. 14.
    Kiene M, Strunskus T, Hasse G, Faupel F (1999) Mater Res Soc Symp Proc 554:167CrossRefGoogle Scholar
  15. 15.
    Triwikantoro, Toma D, Meuris M, Koester U (1999) J Non-Cryst Solids 250–252:719CrossRefGoogle Scholar
  16. 16.
    Köster U, Triwikantoro (2001) Mater Sci Forum 360–362:29CrossRefGoogle Scholar
  17. 17.
    Dhawan A, Raetzke K, Faupel F, Sharma SK (2001) Bull Mater Sci 24:101CrossRefGoogle Scholar
  18. 18.
    Dhawan A, Raetzke K, Faupel F, Sharma SK (2003) Phys Status Solidi 199:431CrossRefGoogle Scholar
  19. 19.
    Sharma SK, Strunskus T, Ladebusch H, Faupel F (2001) Mater Sci Eng A 304–306:747CrossRefGoogle Scholar
  20. 20.
    Tam CY, Shek CH (2005) J Mater Res 20:1396CrossRefGoogle Scholar
  21. 21.
    Kai W, Hsieh HH, Nieh TG, Kawamura Y (2002) Intermetallics 10:1265CrossRefGoogle Scholar
  22. 22.
    Wong CH, Shek CH (2004) Intermetallics 12:1257CrossRefGoogle Scholar
  23. 23.
    Dhawan A, Zaporojtchenko V, Faupel F, Sharma SK (2007) J Mater Sci 42:9037. doi: https://doi.org/10.1007/s10853-007-1819-z CrossRefGoogle Scholar
  24. 24.
    Kai W, Hseih HH, Chen YR, Wang YF, Dang PC (2007) Intermetallics 15:1459CrossRefGoogle Scholar
  25. 25.
    Hsieh HH, Kai W, Huang RT, Pan MX, Nieh TG (2004) Intermetallics 12:1089CrossRefGoogle Scholar
  26. 26.
    Liu L, Chan KC (2005) Appl Phys A Mater Sci Process 80:1737CrossRefGoogle Scholar
  27. 27.
    Ehmler H, Heesemann A, Rätzke K, Faupel F, Geyer U (1998) Phys Rev Lett 80:4919CrossRefGoogle Scholar
  28. 28.
    Busch R, Johnson WL (1998) Mater Sci Forum 269–272:577CrossRefGoogle Scholar
  29. 29.
    Macht M-P, Wei Q, Wanderka N, Sieber I, Deyneka N (2000) Mater Sci Forum 343–346:173CrossRefGoogle Scholar
  30. 30.
    Moulder JF, Stickle WF, Sobol PE, Bomben KD, Chastain J (1992) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer, Physical Electronics Division, Eden PrairieGoogle Scholar
  31. 31.
    Nishino Y, Krauss AR, Lin Y, Gruen DM (1996) J Nucl Mater 228:346CrossRefGoogle Scholar
  32. 32.
    Kaufmann R, Klewe-Nebenius H, Moers H, Pfennig G, Jennet H, Ache HJ (1988) Surf Interface Anal 11:502CrossRefGoogle Scholar
  33. 33.
    Zaporozchenko V, Stepanova MG (1995) Prog Surf Sci 49:155CrossRefGoogle Scholar
  34. 34.
    Satoh H, Nakane H, Adachi H (1996) Appl Surf Sci 94–95:247CrossRefGoogle Scholar
  35. 35.
    Lee PA, Stork KE, Maschoff BL, Nebesny KW, Armstrong NR (1991) Surf Interface Anal 17:48CrossRefGoogle Scholar
  36. 36.
    Vaquila I, Passeggi MCG Jr, Ferron J (1996) Appl Surf Sci 93:247CrossRefGoogle Scholar
  37. 37.
    Seah MP, Dench WA (1979) Surf Interface Anal 1:2CrossRefGoogle Scholar
  38. 38.
    Ertl G, Küppers J (1985) Low energy electron and surface chemistry. VCH, Weinheim, p 78Google Scholar
  39. 39.
    Lide DR (ed) (1991–1992) CRC handbook of chemistry and physics, 72nd edn. CRC Press, Boca RatonGoogle Scholar
  40. 40.
    Wang WH, Bian PW, Zhang Y, Pan MX, Zhao DQ (2002) Intermetallics 10:1249CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • S. K. Sharma
    • 1
    • 2
    Email author
  • T. Strunskus
    • 1
    • 3
  • H. Ladebusch
    • 1
  • V. Zaporojtchenko
    • 1
  • F. Faupel
    • 1
  1. 1.Lehrstuhl fur MaterialverbundeTechnische Fakultät der CAU KielKielGermany
  2. 2.Department of PhysicsMalaviya National Institute of TechnologyJaipurIndia
  3. 3.Lehrstuhl für Physikalische Chemie 1, Ruhr-Universität BochumBochumGermany

Personalised recommendations