Journal of Materials Science

, Volume 43, Issue 16, pp 5540–5545 | Cite as

Microwave initiated hydrothermal synthesis of nano-sized complex fluorides, KMF3 (K = Zn, Mn, Co, and Fe)

  • Purnendu Parhi
  • Jon Kramer
  • V. ManivannanEmail author


A microwave assisted hydrothermal method, where the advantages of both microwave and hydrothermal methods are utilized to synthesize complex fluoride KMF3 (M = Zn, Mn, Co, Fe), materials of technological importance, is proposed. The KMF3 metal fluorides synthesized feature nano-sized particles having well-defined cubic morphologies. The proposed synthesis, in contrast to the existing synthesis methods is very rapid, economical, and less complex in nature. The structural, thermal, optical, and chemical properties of synthesized powders are determined by powder X-ray diffraction, scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and diffuse reflectance spectra in the UV–VIS range.


Diffuse Reflectance Spectrum Triglycine Sulfate Metal Fluoride Local Spin Density Approximation Complex Fluoride 



The authors would like to acknowledge Professor Allan Kirkpatrick, Department Head, Mechanical Engineering, Colorado State University, for his continued help, encouragement, and support.


  1. 1.
    Scott JF (1988) Ferroelectr Rev 1:1Google Scholar
  2. 2.
    Millis JF (1988) Nature 392:147. doi: CrossRefGoogle Scholar
  3. 3.
    Wessles BW (1995) Annu Rev Mater Sci 25:525CrossRefGoogle Scholar
  4. 4.
    Dzik GD, Sokolska I, Golab S, Baluka M (2000) J Alloy Comp 300:254. doi: CrossRefGoogle Scholar
  5. 5.
    Su H, Jia Z, Shi C (2002) Chem Mater 14:310. doi: CrossRefGoogle Scholar
  6. 6.
    Somiya S, Hirano SI, Yoshimura M, Yanagisawa K (1981) J Mater Sci 16:813. doi: CrossRefGoogle Scholar
  7. 7.
    Zhao C, Feng S, Xu R, Shi C, Ni J (1997) Chem Commun (Camb) 10:945. doi: CrossRefGoogle Scholar
  8. 8.
    Zhao C, Feng S, Chao Z, Shi C, Xu R, Ni J (1996) Chem Commun (Camb) 14:1641. doi: CrossRefGoogle Scholar
  9. 9.
    Hua R, Jia Z, Xie D, Shi C (2002) Chem Lett 31:538. doi: CrossRefGoogle Scholar
  10. 10.
    Lee J, Shin H, Lee J, Chung H, Zhang Q, Saito F (2003) Mater Trans 44:1457. doi: CrossRefGoogle Scholar
  11. 11.
    Sreeja V, Joy PA (2007) Mater Res Bull 42:1570. doi: CrossRefGoogle Scholar
  12. 12.
    Kumada N, Kinomura N, Komarneni S (1998) Mater Res Bull 33:1411. doi: CrossRefGoogle Scholar
  13. 13.
    Komarneni S, Roy R, Li QH (1992) Mater Res Bull 27:1393. doi: CrossRefGoogle Scholar
  14. 14.
    Komarneni S, Li QH, Roy R (1994) J Math Chem 4:1903. doi: CrossRefGoogle Scholar
  15. 15.
    Komarneni S, Katsuki H (2002) Pure Appl Chem 74:1537. doi: CrossRefGoogle Scholar
  16. 16.
    Liu J, Li K, Wang H, Zhu M, Yan H (2004) Chem Phys Lett 396:429. doi: CrossRefGoogle Scholar
  17. 17.
    Khollam YB, Deshpande AS, Patil AJ, Potdar HS, Deshpande SB, Date SK (2001) Mater Chem Phys 71:235. doi: CrossRefGoogle Scholar
  18. 18.
    Baldassari S, Komarneni S, Mariani E, Villa C (2005) Mater Res Bull 40:2014. doi: CrossRefGoogle Scholar
  19. 19.
    Verma S, Joy PA, Khollam YB, Potdar HS, Deshpande SB (2004) Mater Lett 58:1092. doi: CrossRefGoogle Scholar
  20. 20.
    Kim C-K, Lee J-H, Katoh S, Murakami R, Yoshimura M (2001) Mater Res Bull 36:2241. doi: CrossRefGoogle Scholar
  21. 21.
    Card No JCPDS 72–113, 72–109, 18–1006, 72,110, ICDD, PCPDFWIN v.2.1, JCPDS-International centre for diffraction data 2000Google Scholar
  22. 22.
    Chastain J (1992) Handbook of X-ray photoelectron spectroscopy. Perkin, Eden Prairie, MN, USAGoogle Scholar
  23. 23.
    Fadley CS, Shirley DA, Freeman AG, Bagus PS, Mallow GV (1969) Phys Rev Lett 24:1397. doi: CrossRefGoogle Scholar
  24. 24.
    Kowalcyyk SP, Ley L, McFeely FR, Shirley DA (1977) Phys Rev B 15:4997. doi: CrossRefGoogle Scholar
  25. 25.
    Sugawara F, Onuki H (1978) J Phys Soc Jpn 44:1045. doi: CrossRefGoogle Scholar
  26. 26.
    Onuki H, Sugawara F, Hirano M, Yamaguchi Y (1976) J Phys Soc Jpn 41:1807. doi: CrossRefGoogle Scholar
  27. 27.
    Okazaki A, Suemune Y (1962) J Phys Soc Jpn 17:204CrossRefGoogle Scholar
  28. 28.
    Sugano S, Shulman RG (1963) Phys Rev 130:517. doi: CrossRefGoogle Scholar
  29. 29.
    Sahnoun M, Zbiri M, Daul C, Khenata R, Baltache H, Driz M (2005) Mater Chem Phys 91:185. doi: CrossRefGoogle Scholar
  30. 30.
    Horsch G, Paus P (1986) J Opt Commun 60:89. doi: CrossRefGoogle Scholar
  31. 31.
    Kubelka P, Munk F (1931) Z Tech Phys 12:593Google Scholar
  32. 32.
    Kortum G (1969) Reflectance spectroscopy principles methods, applications. Spinger-Verlag, New YorkCrossRefGoogle Scholar
  33. 33.
    Barton DG, Shtein M, Wilson RD, Soled SL, Iglesia E (1999) J Phys Chem B 103:630. doi: CrossRefGoogle Scholar
  34. 34.
    Tauc J, Grigorov R, Vancu A (1966) Phys Status Solidi 15:627. doi: CrossRefGoogle Scholar
  35. 35.
    Punkkinen MPJ (1999) Solid State Commun 11:477. doi: CrossRefGoogle Scholar
  36. 36.
    Sahu BR, Kleinman L (2004) Phys Rev B 69:165202. doi: CrossRefGoogle Scholar
  37. 37.
    Knausenberger WH, Tauber RN (1973) J Electrochem Soc 129:927. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Campus Delivery 1374Colorado State UniversityFort CollinsUSA

Personalised recommendations