Advertisement

Journal of Materials Science

, Volume 43, Issue 16, pp 5483–5488 | Cite as

Influence of lanthanum addition on preparation and powder properties of cobalt phosphates

  • Hiroaki OnodaEmail author
  • Keisuke Tange
  • Isao Tanaka
Article

Abstract

Transition metal phosphates are used as inorganic pigments; however, these materials had a weak point for acid and base resistance. Because lanthanum phosphate is insoluble in acidic and basic solution, the addition of lanthanum cation was tried to improve the acid and base resistance of cobalt phosphate pigment. The lanthanum doped cobalt phosphates were prepared from phosphoric acid, cobalt nitrate, and lanthanum nitrate solution. The additional effects of lanthanum cation were studied on the chemical composition, particle shape and size distribution, specific surface area, color, acid and base resistance of the precipitates, and their thermal products.

Keywords

Lanthanum Base Resistance Cobalt Nitrate Rare Earth Cation Thermal Product 

References

  1. 1.
    Onoda H, Nariai H, Moriwaki A, Maki H, Motooka I (2002) J Mater Chem 12(6):1754. doi: https://doi.org/10.1039/b110121h CrossRefGoogle Scholar
  2. 2.
    Onoda H, Ohta T, Tamaki J, Kojima K (2005) Appl Catal Gen 288(1–2):98. doi: https://doi.org/10.1016/j.apcata.2005.04.028 CrossRefGoogle Scholar
  3. 3.
    Onoda H, Yokouchi K, Kojima K, Nariai H (2005) Mater Sci Eng B 116(2):189. doi: https://doi.org/10.1016/j.mseb.2004.10.002 CrossRefGoogle Scholar
  4. 4.
    Onoda H, Kojima K, Nariai H (2006) J Alloys Comp 408–412:568CrossRefGoogle Scholar
  5. 5.
    Lenz DM, Delamar M, Ferreira CA (2007) Prog Org Coat 58:64. doi: https://doi.org/10.1016/j.porgcoat.2006.12.002 CrossRefGoogle Scholar
  6. 6.
    Mahdavian MA, Attar MM (2005) Electrochim Acta 50:4645. doi: https://doi.org/10.1016/j.electacta.2005.02.015 CrossRefGoogle Scholar
  7. 7.
    Hernandez MA, Galliano F, Landolt D (2004) Corros Sci 46:2281. doi: https://doi.org/10.1016/j.corsci.2004.01.009 CrossRefGoogle Scholar
  8. 8.
    Deya MC, Blustein G, Romagnoli R, del Amo B (2002) Surf Coat Tech 150:133. doi: https://doi.org/10.1016/S0257-8972(01)01522-5 CrossRefGoogle Scholar
  9. 9.
    Topp NE (1974) In: Shiokawa J, Adachi G (eds) Chemistry of the rare earth elements, Kagakudojin, Kyoto, p 184Google Scholar
  10. 10.
    Onoda H, Nariai H, Maki H, Motooka I (2001) Phosphorus Res Bull 12:139CrossRefGoogle Scholar
  11. 11.
    Onoda H, Ohta T, Tamaki J, Kojima K, Nariai H (2006) Mater Chem Phys 96(1):163. doi: https://doi.org/10.1016/j.matchemphys.2005.07.001 CrossRefGoogle Scholar
  12. 12.
    Onoda H, Sugino N, Kojima K, Nariai H (2003) Mater Chem Phys 82(3):831. doi: https://doi.org/10.1016/j.matchemphys.2003.07.006 CrossRefGoogle Scholar
  13. 13.
    Onoda H, Matsui H, Tanaka I (2007) Mater Sci Eng B 141(1–2):28. doi: https://doi.org/10.1016/j.mseb.2007.05.009 CrossRefGoogle Scholar
  14. 14.
    Mesegure S, Tena MA, Gargori C, Badenes JA, Llusar M, Monros G (2007) Ceram Int 33:843. doi: https://doi.org/10.1016/j.ceramint.2006.01.024 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Environment and Information Sciences, Faculty of Life and Environmental SciencesKyoto Prefectural UniversitySakyo-ku, KyotoJapan
  2. 2.Department of Applied Chemistry, Faculty of Science and EngineeringRitsumeikan UniversityKusatsuJapan
  3. 3.Department of Materials Science and Engineering, Faculty of EngineeringKyoto UniversitySakyo-ku, KyotoJapan

Personalised recommendations