Advertisement

Journal of Materials Science

, Volume 43, Issue 16, pp 5448–5455 | Cite as

Cooling slope casting to obtain thixotropic feedstock I: observations with a transparent analogue

  • E. Cardoso Legoretta
  • H. V. AtkinsonEmail author
  • H. Jones
Article

Abstract

New Rheocasting (the NRC process) is a recently developed semisolid processing route. There are two versions of this route. In one, molten alloy is poured directly into a tilted mould and through careful temperature control during cooling a spheroidal semisolid microstructure is achieved, before the material in the mould is upended into a shot sleeve and hence forced into a die. Alternatively, the molten alloy is poured onto a cooling slope and thence into a mould before processing. The aim of the work described in this article, and its companion, was to develop understanding of the microstructural development during the initial stages of this process i.e. in the mould before processing and with the cooling slope/mould combination. In this first article, an analogue system based on aqueous ammonium chloride has been used to visualise what happens when an alloy is poured into a tilted mould with a chill wall. In the companion article, the results for pouring A356 aluminium alloy directly into a mould, and also via a cooling slope into a mould are presented.

Keywords

Tilt Angle Companion Article Semisolid State Shot Sleeve Semisolid Processing 

Notes

Acknowledgements

E. Cardoso Legoretta would like to acknowledge the financial support provided by CONACyt and SEP and also the Universidad Autónoma del Estado de Hidalgo for support. The authors are grateful to the Department of Engineering Materials at the University of Sheffield for the provision of laboratory facilities. H. Atkinson would like to acknowledge the University of Leicester for sabbatical leave.

References

  1. 1.
    Spencer DB, Mehrabian R, Flemings MC (1972) Metall Trans 3:1925. doi: https://doi.org/10.1007/BF02642580 CrossRefGoogle Scholar
  2. 2.
    Flemings MC (1991) Metall Trans A22:957CrossRefGoogle Scholar
  3. 3.
    Kirkwood DH (1994) Int Mater Rev 39:173CrossRefGoogle Scholar
  4. 4.
    de Figuredo A (ed) (2001) Science and technology of semi-solid processing. North American Die Casting Association, Rosemont, ILGoogle Scholar
  5. 5.
  6. 6.
    Atkinson HV (2005) Prog Mater Sci 50:341. doi: https://doi.org/10.1016/j.pmatsci.2004.04.003 CrossRefGoogle Scholar
  7. 7.
    Kaneuchi T, Shibata R, Ozawa M (2002) In: Tsutsui Y, Kiuchi M, Ichikawa K (eds) Proceedings of the 7th international conference on advanced semi-solid processing of alloys and composites, Tsukuba, Japan, 2002. National Institute of Advanced Science and Technology and the Japan Society for Technology of Plasticity, p 145Google Scholar
  8. 8.
    Mitsuru A, Hiroto S, Yasunori H, Tatsuo S, Satoru S, Atsushi Y (1996) Method and apparatus for shaping semisolid metals, UBE Industries Limited, Patent EP 0745694 A1Google Scholar
  9. 9.
    Hall K, Kaufmann H, Mundl A (2000) In: Chiarmetta GL, Rosso M (eds) Proceedings of the 6th international conference on semi-solid processing of alloys and composites, Turin, Italy, 2000. Edimet Spa, Brescia, Italy, p 23Google Scholar
  10. 10.
    Kaufmann H, Ranshofen H, Wabusseg H, Uggowitzer PJ (2000) Aluminium 76:70Google Scholar
  11. 11.
    Kaufmann H, Mundl A, Uggowitzer PJ, Potzinger R, Ishibashi N (2002) Die Cast Eng 4:16Google Scholar
  12. 12.
    Uggowitzer PJ, Kaufmann H (2004) Steel Res Int 75:525CrossRefGoogle Scholar
  13. 13.
    Zhu MF, Kim JM, Hong CP (2001) ISIJ Intern 41:992. doi: https://doi.org/10.2355/isijinternational.41.992 CrossRefGoogle Scholar
  14. 14.
    Jackson KA, Hunt JD (1965) Acta Metall 13:1212. doi: https://doi.org/10.1016/0001-6160(65)90061-1 CrossRefGoogle Scholar
  15. 15.
    Beckerman C, Wang CY (1996) Metall Mater Trans 27A:2784. doi: https://doi.org/10.1007/BF02652371 CrossRefGoogle Scholar
  16. 16.
    Hansen G, Hellawell A, Lu SZ, Steube RS (1996) Metall Mater Trans 27A:569. doi: https://doi.org/10.1007/BF02648947 CrossRefGoogle Scholar
  17. 17.
    Christenson MS, Incropera FP (1989) Int J Heat Mass Transfer 32:47. doi: https://doi.org/10.1016/0017-9310(89)90090-2 CrossRefGoogle Scholar
  18. 18.
    Prescott PJ, Incropera FJ (1996) Transp Phenom Mater Process 28:231CrossRefGoogle Scholar
  19. 19.
    Paradies CJ, Kim GT, Glicksman ME, Smith RN (1993) In: Piwonka TS, Voller V, Katgerman L (eds) Proceedings of the international congress modelling of casting, welding and advanced solidification processes VI, TMS, pp 309–316Google Scholar
  20. 20.
    Chen F (2001) Proc Natl Sci Counc ROCA 25(2):71Google Scholar
  21. 21.
    Paradies CJ, Smith RN, Glicksman ME (1997) Metall Mater Trans 28A:875CrossRefGoogle Scholar
  22. 22.
    Mullis AM, Battersby SE, Fletcher HL (1998) Scr Mater 39:147. doi: https://doi.org/10.1016/S1359-6462(98)00143-2 CrossRefGoogle Scholar
  23. 23.
    Kaneko K, Koyaguchi T (2000) J Vulcanol Geotherm Res 96:161. doi: https://doi.org/10.1016/S0377-0273(99)00145-6 CrossRefGoogle Scholar
  24. 24.
    Wang GX, Yao C, Chung BTF (1999) Proc ASME Heat Transfer Division 364-2:281Google Scholar
  25. 25.
    Appolaire B, Albert V, Combeau H, Lesoult G (1998) Acta Mater 46:5851. doi: https://doi.org/10.1016/S1359-6454(98)00236-5 CrossRefGoogle Scholar
  26. 26.
    Cardoso Legoretta E, Atkinson HV, Jones H (submitted) J Mater Sci. doi: https://doi.org/10.1007/s10853-008-2829-1 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • E. Cardoso Legoretta
    • 1
    • 2
  • H. V. Atkinson
    • 3
    Email author
  • H. Jones
    • 2
  1. 1.Universidad Autónoma del Estado de Hidalgo, Centro de Investigaciones en Materiales y Metalurgia, Cuidad UniversitariaPachucaMexico
  2. 2.Department of Engineering MaterialsUniversity of SheffieldSheffieldUK
  3. 3.Department of EngineeringUniversity of LeicesterLeicesterUK

Personalised recommendations