Advertisement

Journal of Materials Science

, Volume 43, Issue 17, pp 5861–5866 | Cite as

Preparation of gold/polyaniline/multiwall carbon nanotube nanocomposites and application in ammonia gas detection

  • Qifei Chang
  • Kai Zhao
  • Xing Chen
  • Minqiang Li
  • Jinhuai Liu
Article

Abstract

Composites of multiwall carbon nanotubes (MWNTs), polyaniline (PANI), and gold nanoparticles were prepared by one pot synthesis. Based on the interaction between aniline monomers and MWNTs, aniline molecules were adsorbed and polymerized on the surface of MWNTs. The nanocomposites were characterized by transmission electron microscopy (TEM), X-ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoemission spectroscopy (XPS). The sensors based on Au/PANI/MWNT nanocomposites were tested for on-line monitoring of ammonia gas. The results show that the as-prepared sensors have superior sensitivity, and good repeatability upon repeated exposure to ammonia gas.

Keywords

PANI Emeraldine Base Emeraldine Salt Aniline Monomer Quinoid Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 60574095), the Dean’s fund from Hefei Institute of Physical Science, Chinese Academy of Science, and the Knowledge Innovation Program of the Chinese Academy of Science. The authors would like to thank Drs. Tao Luo and Dr. Liangbao Yang for help with preparation of the manuscript.

References

  1. 1.
    Iijima S (1991) Nature 354:56. doi: 10.1038/354056a0 CrossRefGoogle Scholar
  2. 2.
    Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ (1997) Nature 386:77CrossRefGoogle Scholar
  3. 3.
    Chambers A, Park C, Baker RTK, Rodriguez NM (1998) J Phys Chem B 102:4253. doi: 10.1021/jp980114l CrossRefGoogle Scholar
  4. 4.
    Collins PG, Bradley K, Ishigami M, Zettle A (2000) Science 287:1801. doi: 10.1126/science.287.5459.1801 CrossRefGoogle Scholar
  5. 5.
    Kolmakov A, Moskovits M (2004) Annu Rev Mater Res 34:151. doi: 10.1146/annurev.matsci.34.040203.112141 CrossRefGoogle Scholar
  6. 6.
    Kong J, Franklin NR, Zhou CW, Chapline MG, Peng S, Cho KJ, Dai HJ (2000) Science 287:622CrossRefGoogle Scholar
  7. 7.
    Li J, Lu Y, Ye Q, Cinke M, Han J, Meyyappan M (2003) Nano Lett 3:929. doi: 10.1021/nl034220x CrossRefGoogle Scholar
  8. 8.
    Modi A, Koratkar N, Lass E, Wei B, Ajayan PM (2003) Nature 424:171. doi: 10.1038/nature01777 CrossRefGoogle Scholar
  9. 9.
    Penza M, Cassano G, Aversa P, Antolini F, Cusano A, Cutolo A, Giordano M, Nicolais L (2004) Appl Phys Lett 85:2379CrossRefGoogle Scholar
  10. 10.
    Someya T, Small J, Kim P, Nuckolls C, Yardley JT (2003) Nano Lett 3:877. doi: 10.1021/nl034061h CrossRefGoogle Scholar
  11. 11.
    Cantalini C, Valentini L, Armentano I, Lozzi L, Kenny JM, Santucci S (2003) Sens Actuators B 95:195CrossRefGoogle Scholar
  12. 12.
    Zhang J, Boyd A, Tselev A, Paranjape M, Barbara P (2006) Appl Phys Lett 88:123112CrossRefGoogle Scholar
  13. 13.
    Bestman K, Lee JO, Wiertz FGM, Heering HA, Dekker C (2003) Nano Lett 3:727CrossRefGoogle Scholar
  14. 14.
    Manners I (2001) Science 294:1664CrossRefGoogle Scholar
  15. 15.
    Breimer MA, Yevgeny G, Sy S, Sadik OA (2001) Nano Lett 1:305CrossRefGoogle Scholar
  16. 16.
    Lu YF, Yang Y, Sellinger A, Lu MC, Huang JM, Fan HY et al (2001) Nature 410:913CrossRefGoogle Scholar
  17. 17.
    Boal AK, Ilhan F, DeRouchey JE, Thurnalbrecht T, Russel TP, Rotello VM (2000) Nature 404:746CrossRefGoogle Scholar
  18. 18.
    Mu YY, Liang HP, Hu JS, Jiang L, Wan LJ (2005) J Phys Chem B 109:22212CrossRefGoogle Scholar
  19. 19.
    Heeger AJ (2001) Angew Chem Int Ed 40:2591CrossRefGoogle Scholar
  20. 20.
    Huang JX, Virji S, Weiller BH, Kaner RB (2004) Chem Eur J 10:1314CrossRefGoogle Scholar
  21. 21.
    Liu HQ, Kameoka J, Czaplewski DA, Craighead HG (2004) Nano Lett 4:671CrossRefGoogle Scholar
  22. 22.
    Wang J, Chan A, Carlson RR, Luo Y, Ge GL, Ries RS, Heath JR, Tseng HR (2004) Nano Lett 4:1693CrossRefGoogle Scholar
  23. 23.
    Lee RS, Kim HJ, Fischer JE, Thess A, Smalley RE (1997) Nature 388:255CrossRefGoogle Scholar
  24. 24.
    Devi GS, Subrahmanyam VB, Gadkari SC, Gupta SK (2006) Anal Chim Acta 568:41CrossRefGoogle Scholar
  25. 25.
    Patil DR, Patil LA, Patil PP (2007) Sens Actuators B 126:368CrossRefGoogle Scholar
  26. 26.
    Star A, Stoddart JF, Steuerman D, Diehl M, Bouaki A, Wong EW, Yang X, Chung SW, Chio H, Heath JR (2001) Angew Chem Int Ed 40:1721Google Scholar
  27. 27.
    Cochet M, Maser WK, Benito AM, Callejas MA, Martinez MT, Benoit JM, Schreiber J, Chauevt O (2001) Chem Comm 16:1450CrossRefGoogle Scholar
  28. 28.
    Leff DV, Brandt L, Heath JR (1996) Langmuir 12:4723CrossRefGoogle Scholar
  29. 29.
    Moon YB, Cao Y, Smith P, Heeger AJ (1989) Polym Comm 30:196Google Scholar
  30. 30.
    Cheng WL, Dong SJ, Wang E (2003) Langmuir 19:9434CrossRefGoogle Scholar
  31. 31.
    Dauginet-De Pra L, Demoustier-Champagne S (2005) Thin Solid Flims 479:321CrossRefGoogle Scholar
  32. 32.
    Chabukswar VV, Pethkar S, Athawale AA (2001) Sens Actuators B 77:657CrossRefGoogle Scholar
  33. 33.
    Kukla AL, Shirshov YM, Piletsky SA (1996) Sens Actuators B 37:135CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Qifei Chang
    • 1
    • 2
  • Kai Zhao
    • 1
  • Xing Chen
    • 1
  • Minqiang Li
    • 1
  • Jinhuai Liu
    • 1
  1. 1.The Key Laboratory of Biomimetic Sensing and Advanced Robot TechnologyInstitute of Intelligent Machines, Chinese Academy of ScienceHefeiPeople’s Republic of China
  2. 2.Department of ChemistryUniversity of Science and Technology of ChinaHefeiPeople’s Republic of China

Personalised recommendations