Charge-transport and photocurrent generation in bulk hetero junction based on Chloro-aluminum phthalocyanine (ClAlPc) and Rose Bengal (RB)
- 279 Downloads
- 10 Citations
Abstract
Bulk-hetero junctions were made with the intermixing of Chloro-aluminum phthalocyanine (ClAlPc) (p-type) and Rose Bengal (RB) (n-type material) from the common solvent. The optical properties of blend reveal that light harvesting is possible from almost entire visible spectrum of the material. The devices were characterized by recording its J–V in dark and under illumination and impedance analysis under various temperatures over wide frequency range, i.e., from 100 Hz to 1 MHz. Various photovoltaic parameters like open circuit voltage (Voc), short-circuit photocurrent (Jsc), and fill factor were evaluated and found to be as 0.92 V and 0.44 mA/cm2 and 0.48, respectively. Also, the effect of thermal annealing on the optical, electrical, and photovoltaic properties of bulk heterojunction device was investigated. From the impedance spectroscopy, we conclude that the change in bulk resistance and dielectric constant of active layer due to the illumination has a direct relevance to the photocurrent generation by the device. The overall observation reveals that upon thermal annealing of the device imparts substantial increase in hole mobility which results in balanced charge transport.
Keywords
Space Charge Thermal Annealing Power Conversion Efficiency Hole Mobility Rose BengalNotes
Acknowledgement
We are grateful to Council for Scientific and Industrial Research for financial support through project.
References
- 1.Spanggaard H, Krebs FC (2004) Sol Energy Mater Sol Cells 83:125. doi: https://doi.org/10.1016/j.solmat.2004.02.021 CrossRefGoogle Scholar
- 2.Sun SS, Sariciftci NS (2005) Organic photovoltaic mechanisms, materials, devices. CRC Pres, Boca RationGoogle Scholar
- 3.Hoppe H, Sariciftci NS, Meissner D (2002) Mol Crys Liq Crystallogr 385:113. doi: https://doi.org/10.1080/713738799 CrossRefGoogle Scholar
- 4.Hoppe H, Sariciftci NS (2004) J Mater Chem 19:1924Google Scholar
- 5.Singh B, Sariciftci NS (2006) Annu Rev Mater Res 36:199. doi: https://doi.org/10.1146/annurev.matsci.36.022805.094757 CrossRefGoogle Scholar
- 6.Krebs FC, Spanggard H (2005) Chem Mater 17:5235. doi: https://doi.org/10.1021/cm051320q CrossRefGoogle Scholar
- 7.Ma W, Yang C, Gong X, Lee K, Heeger AJ (2005) Adv Funct Mater 15:1617. doi: https://doi.org/10.1002/adfm.200500211 CrossRefGoogle Scholar
- 8.Wang XJ, Perzon E, Delgado JL, Dela Cruz P, Zeng FL, Langa F et al (2004) Appl Phys Lett 85:5081. doi: https://doi.org/10.1063/1.1825070 CrossRefGoogle Scholar
- 9.Wang X, Perzon E, Oswald F, Langa F, Admassie S, Anderson MR et al (2005) Adv Funct Mater 15:1665. doi: https://doi.org/10.1002/adfm.200500114 CrossRefGoogle Scholar
- 10.Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ (1995) Science 270:1789. doi: https://doi.org/10.1126/science.270.5243.1789 CrossRefGoogle Scholar
- 11.Halls JJM, Walsh CA, Greenham NC, Marseglia EA, Friend RH, Morattia SC et al (1995) Nature 376:498. doi: https://doi.org/10.1038/376498a0 CrossRefGoogle Scholar
- 12.Peumens P, Yakimov A, Forrest SR (2003) J Appl Phys 93:3693. doi: https://doi.org/10.1063/1.1534621 CrossRefGoogle Scholar
- 13.Hong ZR, Lee CS, Lee ST, Li WL, Shirota Y (2002) Appl Phys Lett 81:2898Google Scholar
- 14.Rand BP, Xue J, Uchida S, Forrest SR (2005) J Appl Phys 98:124902. doi: https://doi.org/10.1063/1.2142072 CrossRefGoogle Scholar
- 15.Scharber MC, Muhlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ et al (2006) Adv Mater 18:789. doi: https://doi.org/10.1002/adma.200501717 CrossRefGoogle Scholar
- 16.Heggie DA, MacDonald BL, Hill IG (2006) J Appl Phys 100:104505. doi: https://doi.org/10.1063/1.2374694 CrossRefGoogle Scholar
- 17.Bundaagd E, Frebs FC (2007) Sol Energy Mater Sol Cells 91:954. doi: https://doi.org/10.1016/j.solmat.2007.01.015 CrossRefGoogle Scholar
- 18.Koeppe R, Bossart O, Calzaferri G, Sariciftci NS (2007) Sol Energy Mater Sol Cells 91:986. doi: https://doi.org/10.1016/j.solmat.2007.01.008 CrossRefGoogle Scholar
- 19.Gunes S, Neugebaur H, Sariciftci NS (2007) Chem Rev 107:1324. doi: https://doi.org/10.1021/cr050149z CrossRefGoogle Scholar
- 20.Waldauf C, Scharber MC, Schilinsky P, Hauch JA, Brabec CJ (2006) J Appl Phys 99:104503. doi: https://doi.org/10.1063/1.2198930 CrossRefGoogle Scholar
- 21.Shin WS, Jeong HH, Kim MK, Jin SH, Kim MR, Lee JK et al (2006) J Mater Chem 16:384. doi: https://doi.org/10.1039/b512983d CrossRefGoogle Scholar
- 22.Padinger F, Rittberger R, Sariciftci NS (2003) Adv Funct Mater 13:85. doi: https://doi.org/10.1002/adfm.200390011 CrossRefGoogle Scholar
- 23.Drees M, Premaratne K, Graupher W, Heflin JR, Devis RM, Marciu D, Miller M (2002) Appl Phys Lett 81:4607. doi: https://doi.org/10.1063/1.1522830 CrossRefGoogle Scholar
- 24.Hiramoto M, Suegaki M, Yakoyama M (1990) Chem Lett 19:327. doi: https://doi.org/10.1246/cl.1990.327 CrossRefGoogle Scholar
- 25.Suemori K, Miyata T, Yokoyama M, Hiramoto M (2005) Appl Phys Lett 86:063509. doi: https://doi.org/10.1063/1.1863451 CrossRefGoogle Scholar
- 26.Uchida S, Xue J, Rand BP, Forrest SR (2004) Appl Phys Lett 84:4218. doi: https://doi.org/10.1063/1.1755833 CrossRefGoogle Scholar
- 27.Schultes SM, Sullivan P, Heutz S, Sanderson M, Jones TJ (2005) Mater Sci Eng C 25:858. doi: https://doi.org/10.1016/j.msec.2005.06.039 CrossRefGoogle Scholar
- 28.Gebeyehu D, Maennig B, Drechsel J, Leo K, Pfeifter M (2003) Sol Energy Mater Sol Cells 79:81. doi: https://doi.org/10.1016/S0927-0248(02)00369-0 CrossRefGoogle Scholar
- 29.Chan MY, Lai SL, Fung MK, Lee CS, Lee ST (2007) Appl Phys Lett 90:023504. doi: https://doi.org/10.1063/1.2430783 CrossRefGoogle Scholar
- 30.Balaban TS (2005) Acc Chem Res 38:612. doi: https://doi.org/10.1021/ar040211z CrossRefGoogle Scholar
- 31.Wasielewski MS (1992) Chem Rev 92:435CrossRefGoogle Scholar
- 32.Harriman A, Sauvage JP (1993) Chem Soc Rev 25:198Google Scholar
- 33.Choi MS, Yamazaki T, Yamazaki I, Aida T (2004) Angew Chem Int Ed 43:150. doi: https://doi.org/10.1002/anie.200301665 CrossRefGoogle Scholar
- 34.De la Torre G, Nicolau M, Torres T (2001) In: Nalwa HS (ed) Phthalocyanines, synthesis, supramolecular organization and physical properties. Academic Press, New YorkGoogle Scholar
- 35.De la Torre G, Vazquez P, Agullo-Lopez F, Torres T (2004) Chem Rev 104:3723. doi: https://doi.org/10.1021/cr030206t CrossRefGoogle Scholar
- 36.Gouloumis A, Liu SG, Vazquez P, Echegoyen L, Torres T (2001) Chem Commun 399Google Scholar
- 37.de la Escoura A, Martinez-Diaz MV, Guldi DM, Torres T (2006) J Am Chem Soc 128:4112. doi: https://doi.org/10.1021/ja058123c CrossRefGoogle Scholar
- 38.Li Y, Cao Y, Gao J, Wang D, Yu G, Heeger AJ (1999) Synth Met 99:243. doi: https://doi.org/10.1016/S0379-6779(99)00007-7 CrossRefGoogle Scholar
- 39.Kulkarni AP, Wu PT, Kwon TW, Jenekhe SA (2005) J Phys Chem B 109:19584. doi: https://doi.org/10.1021/jp0529772 CrossRefGoogle Scholar
- 40.Richler MM, Fan FF, Klavettler F, Heeger AJ, Bard AJ (1994) Chem Phys Lett 226:115. doi: https://doi.org/10.1016/0009-2614(94)00716-0 CrossRefGoogle Scholar
- 41.Snaith HJ, Arias AC, Morteani AC, Silva C, Friend RH (2003) Nano Lett 2:1353. doi: https://doi.org/10.1021/nl0257418 CrossRefGoogle Scholar
- 42.Barth S, Bassler H (1997) Phys Rev Lett 79:4445. doi: https://doi.org/10.1103/PhysRevLett.79.4445 CrossRefGoogle Scholar
- 43.Brabec CJ, Cravino A, Zerza G, Sariciftci NS, Kiebooms R, Vanderzande D et al (2001) J Phys Chem B 105:1528. doi: https://doi.org/10.1021/jp003407z CrossRefGoogle Scholar
- 44.Bredas JL, Beljonne D, Coropceanu V, Cornil J (2004) Chem Rev 104:4917. doi: https://doi.org/10.1021/cr040084k CrossRefGoogle Scholar
- 45.Borsenberger PM, Contois LE, Hoesterey DC (1978) J Chem Phys 68:637. doi: https://doi.org/10.1063/1.435731 CrossRefGoogle Scholar
- 46.Chance RR, Braun CL (1976) J Chem Phys 64:3573. doi: https://doi.org/10.1063/1.432707 CrossRefGoogle Scholar
- 47.Herlel D, Soh EV, Bassler H, Rothberg LJ (2002) Chem Phys Lett 361:99. doi: https://doi.org/10.1016/S0009-2614(02)00898-9 CrossRefGoogle Scholar
- 48.Goodman AM, Rose A (1971) J Appl Phys 42:2823. doi: https://doi.org/10.1063/1.1660633 CrossRefGoogle Scholar
- 49.Sokel R, Hughes RC (1982) J Appl Phys 53:7414. doi: https://doi.org/10.1063/1.330111 CrossRefGoogle Scholar
- 50.Katz EA, Faiman D, Tuladhar SM, Kroon JM, Wienk MM, Fromhertz T et al (2001) J Appl Phys 90:5343. doi: https://doi.org/10.1063/1.1412270 CrossRefGoogle Scholar
- 51.Schilinsky P, Waldauf C, Hausch J, Brabec CJ (2004) J Appl Phys 95:2816. doi: https://doi.org/10.1063/1.1646435 CrossRefGoogle Scholar
- 52.Barker JA, Ramadale CM, Greenham NC (2003) Phys Rev B 67:075205. doi: https://doi.org/10.1103/PhysRevB.67.075205 CrossRefGoogle Scholar
- 53.Brabec CJ, Sariciftci NS, Hummelen JC (2001) Adv Funct Mater 11:15. doi :10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO;2-ACrossRefGoogle Scholar
- 54.Bassler H (1993) Phys Status Solidi B 175:15. doi: https://doi.org/10.1002/pssb.2221750102 CrossRefGoogle Scholar
- 55.Koster LJA, Smits ECP, Michailetchi VD, Blom PWM (2005) Phys Rev B 72:085205. doi: https://doi.org/10.1103/PhysRevB.72.085205 CrossRefGoogle Scholar
- 56.Blom PWM, Michailetchi VD, Koster LJA, Markov DE (2007) Adv Mater 19:1551. doi: https://doi.org/10.1002/adma.200601093 CrossRefGoogle Scholar
- 57.Sharma GD (1995) Synth Met 74:227. doi: https://doi.org/10.1016/0379-6779(95)03360-V CrossRefGoogle Scholar
- 58.Mihailetchi VD, Koster LJA, Hummelen JC, Blom PWM (2004) Phys Rev Lett 93:216601. doi: https://doi.org/10.1103/PhysRevLett.93.216601 CrossRefGoogle Scholar
- 59.Mihailetchi VD, Koster LJA, Blom PWM, Meizer C, De Boer B, van Duren JKJ et al (2005) Adv Funct Mater 15:795. doi: https://doi.org/10.1002/adfm.200400345 CrossRefGoogle Scholar
- 60.Meizer C, Koop EJ, Mihailetchi VD, Blom PWM (2004) Adv Funct Mater 14:865. doi: https://doi.org/10.1002/adfm.200305156 CrossRefGoogle Scholar
- 61.Goh C, Kline RJ, McGhee MD, Kadnikova EN, Frechet JMJ (2005) Appl Phys Lett 86:122110. doi: https://doi.org/10.1063/1.1891301 CrossRefGoogle Scholar
- 62.Murgatroyd PN (1970) J Phys D 3:151. doi: https://doi.org/10.1088/0022-3727/3/2/308 CrossRefGoogle Scholar
- 63.Mihailetchi VD, Wildeman J, Bolm PWM (2005) Phys Rev Lett 94:126602. doi: https://doi.org/10.1103/PhysRevLett.94.126602