Advertisement

Journal of Materials Science

, Volume 43, Issue 16, pp 5551–5563 | Cite as

Charge-transport and photocurrent generation in bulk hetero junction based on Chloro-aluminum phthalocyanine (ClAlPc) and Rose Bengal (RB)

  • M. S. Roy
  • P. Balraju
  • Y. S. Deol
  • S. K. Sharma
  • G. D. SharmaEmail author
Article

Abstract

Bulk-hetero junctions were made with the intermixing of Chloro-aluminum phthalocyanine (ClAlPc) (p-type) and Rose Bengal (RB) (n-type material) from the common solvent. The optical properties of blend reveal that light harvesting is possible from almost entire visible spectrum of the material. The devices were characterized by recording its JV in dark and under illumination and impedance analysis under various temperatures over wide frequency range, i.e., from 100 Hz to 1 MHz. Various photovoltaic parameters like open circuit voltage (Voc), short-circuit photocurrent (Jsc), and fill factor were evaluated and found to be as 0.92 V and 0.44 mA/cm2 and 0.48, respectively. Also, the effect of thermal annealing on the optical, electrical, and photovoltaic properties of bulk heterojunction device was investigated. From the impedance spectroscopy, we conclude that the change in bulk resistance and dielectric constant of active layer due to the illumination has a direct relevance to the photocurrent generation by the device. The overall observation reveals that upon thermal annealing of the device imparts substantial increase in hole mobility which results in balanced charge transport.

Keywords

Space Charge Thermal Annealing Power Conversion Efficiency Hole Mobility Rose Bengal 

Notes

Acknowledgement

We are grateful to Council for Scientific and Industrial Research for financial support through project.

References

  1. 1.
    Spanggaard H, Krebs FC (2004) Sol Energy Mater Sol Cells 83:125. doi: https://doi.org/10.1016/j.solmat.2004.02.021 CrossRefGoogle Scholar
  2. 2.
    Sun SS, Sariciftci NS (2005) Organic photovoltaic mechanisms, materials, devices. CRC Pres, Boca RationGoogle Scholar
  3. 3.
    Hoppe H, Sariciftci NS, Meissner D (2002) Mol Crys Liq Crystallogr 385:113. doi: https://doi.org/10.1080/713738799 CrossRefGoogle Scholar
  4. 4.
    Hoppe H, Sariciftci NS (2004) J Mater Chem 19:1924Google Scholar
  5. 5.
    Singh B, Sariciftci NS (2006) Annu Rev Mater Res 36:199. doi: https://doi.org/10.1146/annurev.matsci.36.022805.094757 CrossRefGoogle Scholar
  6. 6.
    Krebs FC, Spanggard H (2005) Chem Mater 17:5235. doi: https://doi.org/10.1021/cm051320q CrossRefGoogle Scholar
  7. 7.
    Ma W, Yang C, Gong X, Lee K, Heeger AJ (2005) Adv Funct Mater 15:1617. doi: https://doi.org/10.1002/adfm.200500211 CrossRefGoogle Scholar
  8. 8.
    Wang XJ, Perzon E, Delgado JL, Dela Cruz P, Zeng FL, Langa F et al (2004) Appl Phys Lett 85:5081. doi: https://doi.org/10.1063/1.1825070 CrossRefGoogle Scholar
  9. 9.
    Wang X, Perzon E, Oswald F, Langa F, Admassie S, Anderson MR et al (2005) Adv Funct Mater 15:1665. doi: https://doi.org/10.1002/adfm.200500114 CrossRefGoogle Scholar
  10. 10.
    Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ (1995) Science 270:1789. doi: https://doi.org/10.1126/science.270.5243.1789 CrossRefGoogle Scholar
  11. 11.
    Halls JJM, Walsh CA, Greenham NC, Marseglia EA, Friend RH, Morattia SC et al (1995) Nature 376:498. doi: https://doi.org/10.1038/376498a0 CrossRefGoogle Scholar
  12. 12.
    Peumens P, Yakimov A, Forrest SR (2003) J Appl Phys 93:3693. doi: https://doi.org/10.1063/1.1534621 CrossRefGoogle Scholar
  13. 13.
    Hong ZR, Lee CS, Lee ST, Li WL, Shirota Y (2002) Appl Phys Lett 81:2898Google Scholar
  14. 14.
    Rand BP, Xue J, Uchida S, Forrest SR (2005) J Appl Phys 98:124902. doi: https://doi.org/10.1063/1.2142072 CrossRefGoogle Scholar
  15. 15.
    Scharber MC, Muhlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ et al (2006) Adv Mater 18:789. doi: https://doi.org/10.1002/adma.200501717 CrossRefGoogle Scholar
  16. 16.
    Heggie DA, MacDonald BL, Hill IG (2006) J Appl Phys 100:104505. doi: https://doi.org/10.1063/1.2374694 CrossRefGoogle Scholar
  17. 17.
    Bundaagd E, Frebs FC (2007) Sol Energy Mater Sol Cells 91:954. doi: https://doi.org/10.1016/j.solmat.2007.01.015 CrossRefGoogle Scholar
  18. 18.
    Koeppe R, Bossart O, Calzaferri G, Sariciftci NS (2007) Sol Energy Mater Sol Cells 91:986. doi: https://doi.org/10.1016/j.solmat.2007.01.008 CrossRefGoogle Scholar
  19. 19.
    Gunes S, Neugebaur H, Sariciftci NS (2007) Chem Rev 107:1324. doi: https://doi.org/10.1021/cr050149z CrossRefGoogle Scholar
  20. 20.
    Waldauf C, Scharber MC, Schilinsky P, Hauch JA, Brabec CJ (2006) J Appl Phys 99:104503. doi: https://doi.org/10.1063/1.2198930 CrossRefGoogle Scholar
  21. 21.
    Shin WS, Jeong HH, Kim MK, Jin SH, Kim MR, Lee JK et al (2006) J Mater Chem 16:384. doi: https://doi.org/10.1039/b512983d CrossRefGoogle Scholar
  22. 22.
    Padinger F, Rittberger R, Sariciftci NS (2003) Adv Funct Mater 13:85. doi: https://doi.org/10.1002/adfm.200390011 CrossRefGoogle Scholar
  23. 23.
    Drees M, Premaratne K, Graupher W, Heflin JR, Devis RM, Marciu D, Miller M (2002) Appl Phys Lett 81:4607. doi: https://doi.org/10.1063/1.1522830 CrossRefGoogle Scholar
  24. 24.
    Hiramoto M, Suegaki M, Yakoyama M (1990) Chem Lett 19:327. doi: https://doi.org/10.1246/cl.1990.327 CrossRefGoogle Scholar
  25. 25.
    Suemori K, Miyata T, Yokoyama M, Hiramoto M (2005) Appl Phys Lett 86:063509. doi: https://doi.org/10.1063/1.1863451 CrossRefGoogle Scholar
  26. 26.
    Uchida S, Xue J, Rand BP, Forrest SR (2004) Appl Phys Lett 84:4218. doi: https://doi.org/10.1063/1.1755833 CrossRefGoogle Scholar
  27. 27.
    Schultes SM, Sullivan P, Heutz S, Sanderson M, Jones TJ (2005) Mater Sci Eng C 25:858. doi: https://doi.org/10.1016/j.msec.2005.06.039 CrossRefGoogle Scholar
  28. 28.
    Gebeyehu D, Maennig B, Drechsel J, Leo K, Pfeifter M (2003) Sol Energy Mater Sol Cells 79:81. doi: https://doi.org/10.1016/S0927-0248(02)00369-0 CrossRefGoogle Scholar
  29. 29.
    Chan MY, Lai SL, Fung MK, Lee CS, Lee ST (2007) Appl Phys Lett 90:023504. doi: https://doi.org/10.1063/1.2430783 CrossRefGoogle Scholar
  30. 30.
    Balaban TS (2005) Acc Chem Res 38:612. doi: https://doi.org/10.1021/ar040211z CrossRefGoogle Scholar
  31. 31.
    Wasielewski MS (1992) Chem Rev 92:435CrossRefGoogle Scholar
  32. 32.
    Harriman A, Sauvage JP (1993) Chem Soc Rev 25:198Google Scholar
  33. 33.
    Choi MS, Yamazaki T, Yamazaki I, Aida T (2004) Angew Chem Int Ed 43:150. doi: https://doi.org/10.1002/anie.200301665 CrossRefGoogle Scholar
  34. 34.
    De la Torre G, Nicolau M, Torres T (2001) In: Nalwa HS (ed) Phthalocyanines, synthesis, supramolecular organization and physical properties. Academic Press, New YorkGoogle Scholar
  35. 35.
    De la Torre G, Vazquez P, Agullo-Lopez F, Torres T (2004) Chem Rev 104:3723. doi: https://doi.org/10.1021/cr030206t CrossRefGoogle Scholar
  36. 36.
    Gouloumis A, Liu SG, Vazquez P, Echegoyen L, Torres T (2001) Chem Commun 399Google Scholar
  37. 37.
    de la Escoura A, Martinez-Diaz MV, Guldi DM, Torres T (2006) J Am Chem Soc 128:4112. doi: https://doi.org/10.1021/ja058123c CrossRefGoogle Scholar
  38. 38.
    Li Y, Cao Y, Gao J, Wang D, Yu G, Heeger AJ (1999) Synth Met 99:243. doi: https://doi.org/10.1016/S0379-6779(99)00007-7 CrossRefGoogle Scholar
  39. 39.
    Kulkarni AP, Wu PT, Kwon TW, Jenekhe SA (2005) J Phys Chem B 109:19584. doi: https://doi.org/10.1021/jp0529772 CrossRefGoogle Scholar
  40. 40.
    Richler MM, Fan FF, Klavettler F, Heeger AJ, Bard AJ (1994) Chem Phys Lett 226:115. doi: https://doi.org/10.1016/0009-2614(94)00716-0 CrossRefGoogle Scholar
  41. 41.
    Snaith HJ, Arias AC, Morteani AC, Silva C, Friend RH (2003) Nano Lett 2:1353. doi: https://doi.org/10.1021/nl0257418 CrossRefGoogle Scholar
  42. 42.
    Barth S, Bassler H (1997) Phys Rev Lett 79:4445. doi: https://doi.org/10.1103/PhysRevLett.79.4445 CrossRefGoogle Scholar
  43. 43.
    Brabec CJ, Cravino A, Zerza G, Sariciftci NS, Kiebooms R, Vanderzande D et al (2001) J Phys Chem B 105:1528. doi: https://doi.org/10.1021/jp003407z CrossRefGoogle Scholar
  44. 44.
    Bredas JL, Beljonne D, Coropceanu V, Cornil J (2004) Chem Rev 104:4917. doi: https://doi.org/10.1021/cr040084k CrossRefGoogle Scholar
  45. 45.
    Borsenberger PM, Contois LE, Hoesterey DC (1978) J Chem Phys 68:637. doi: https://doi.org/10.1063/1.435731 CrossRefGoogle Scholar
  46. 46.
    Chance RR, Braun CL (1976) J Chem Phys 64:3573. doi: https://doi.org/10.1063/1.432707 CrossRefGoogle Scholar
  47. 47.
    Herlel D, Soh EV, Bassler H, Rothberg LJ (2002) Chem Phys Lett 361:99. doi: https://doi.org/10.1016/S0009-2614(02)00898-9 CrossRefGoogle Scholar
  48. 48.
    Goodman AM, Rose A (1971) J Appl Phys 42:2823. doi: https://doi.org/10.1063/1.1660633 CrossRefGoogle Scholar
  49. 49.
    Sokel R, Hughes RC (1982) J Appl Phys 53:7414. doi: https://doi.org/10.1063/1.330111 CrossRefGoogle Scholar
  50. 50.
    Katz EA, Faiman D, Tuladhar SM, Kroon JM, Wienk MM, Fromhertz T et al (2001) J Appl Phys 90:5343. doi: https://doi.org/10.1063/1.1412270 CrossRefGoogle Scholar
  51. 51.
    Schilinsky P, Waldauf C, Hausch J, Brabec CJ (2004) J Appl Phys 95:2816. doi: https://doi.org/10.1063/1.1646435 CrossRefGoogle Scholar
  52. 52.
    Barker JA, Ramadale CM, Greenham NC (2003) Phys Rev B 67:075205. doi: https://doi.org/10.1103/PhysRevB.67.075205 CrossRefGoogle Scholar
  53. 53.
    Brabec CJ, Sariciftci NS, Hummelen JC (2001) Adv Funct Mater 11:15. doi :10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO;2-ACrossRefGoogle Scholar
  54. 54.
    Bassler H (1993) Phys Status Solidi B 175:15. doi: https://doi.org/10.1002/pssb.2221750102 CrossRefGoogle Scholar
  55. 55.
    Koster LJA, Smits ECP, Michailetchi VD, Blom PWM (2005) Phys Rev B 72:085205. doi: https://doi.org/10.1103/PhysRevB.72.085205 CrossRefGoogle Scholar
  56. 56.
    Blom PWM, Michailetchi VD, Koster LJA, Markov DE (2007) Adv Mater 19:1551. doi: https://doi.org/10.1002/adma.200601093 CrossRefGoogle Scholar
  57. 57.
  58. 58.
    Mihailetchi VD, Koster LJA, Hummelen JC, Blom PWM (2004) Phys Rev Lett 93:216601. doi: https://doi.org/10.1103/PhysRevLett.93.216601 CrossRefGoogle Scholar
  59. 59.
    Mihailetchi VD, Koster LJA, Blom PWM, Meizer C, De Boer B, van Duren JKJ et al (2005) Adv Funct Mater 15:795. doi: https://doi.org/10.1002/adfm.200400345 CrossRefGoogle Scholar
  60. 60.
    Meizer C, Koop EJ, Mihailetchi VD, Blom PWM (2004) Adv Funct Mater 14:865. doi: https://doi.org/10.1002/adfm.200305156 CrossRefGoogle Scholar
  61. 61.
    Goh C, Kline RJ, McGhee MD, Kadnikova EN, Frechet JMJ (2005) Appl Phys Lett 86:122110. doi: https://doi.org/10.1063/1.1891301 CrossRefGoogle Scholar
  62. 62.
    Murgatroyd PN (1970) J Phys D 3:151. doi: https://doi.org/10.1088/0022-3727/3/2/308 CrossRefGoogle Scholar
  63. 63.
    Mihailetchi VD, Wildeman J, Bolm PWM (2005) Phys Rev Lett 94:126602. doi: https://doi.org/10.1103/PhysRevLett.94.126602

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • M. S. Roy
    • 1
  • P. Balraju
    • 2
  • Y. S. Deol
    • 1
  • S. K. Sharma
    • 2
  • G. D. Sharma
    • 2
    • 3
    Email author
  1. 1.Defence LaboratoryJodhpurIndia
  2. 2.Physics Department, Molecular Electronic and Optoelectronic Device LaboratoryJNV UniversityJodhpurIndia
  3. 3.Mandsaur Institute of TechnologyMandsaurIndia

Personalised recommendations