Journal of Materials Science

, Volume 43, Issue 16, pp 5669–5671 | Cite as

Dissolutive wetting of Si by molten Cu

  • P. Protsenko
  • O. Kozlova
  • R. Voytovych
  • N. EustathopoulosEmail author

Dissolutive wetting occurs when a liquid spreads over a solid surface with simultaneous dissolution of the solid into the liquid. This process is of great interest for both fundamental research and several industrial processes, an important example being soldering in microelectronics fabrication processes [1]. Several studies, performed for various liquid metal/solid metal systems, have shown that for millimetre-sized droplets the spreading time in dissolutive wetting ranges from a few to several hundred seconds [2, 3, 4, 5, 6]. This time is orders of magnitude higher than the spreading time found in liquid metal/solid metal systems with negligible miscibility, which is typically around 10 ms [7, 8, 9, 10, 11]. Despite the progress made over the last 10 years in the understanding of dissolutive wetting, several points remain obscure concerning both the driving force and kinetics of this type of wetting. The aim of the work reported in this paper is to contribute to this subject by...


Contact Angle Triple Line Sessile Drop Technique Prior Heat Treatment Final Contact Angle 


  1. 1.
    Boettinger WJ, Handwerker CA, Kattner UR (1993) In: Yost FG, Hosking FM, Frear DR (eds) The mechanics of solder alloy wetting and spreading. Kluwer Academic Publishers, Boston, p 103CrossRefGoogle Scholar
  2. 2.
    Yost FG, O’Toole EJ (1998) Acta Mater 46:5143. doi: CrossRefGoogle Scholar
  3. 3.
    Warren JA, Boettinger WJ, Roosen AR (1998) Acta Mater 46:3247. doi: CrossRefGoogle Scholar
  4. 4.
    Yin L, Murray BT, Singler TJ (2006) Acta Mater 54:3561. doi: CrossRefGoogle Scholar
  5. 5.
    Yin L, Meschter SJ, Singler TJ (2004) Acta Mater 52:2873. doi: CrossRefGoogle Scholar
  6. 6.
    Ambrose JC, Nicholas MG, Stoneham AM (1993) Acta Metall Mater 8:2482Google Scholar
  7. 7.
    Lesnik ND, Pestun TS, Eremenko VN (1971) Poroshkovaya Metallurgiya 94:83 (English Translation, Consultants Bureau, 1971, pp 849–853)Google Scholar
  8. 8.
    Naidich Yu V, Zabuga VV, Perevertailo VM (1992) Adgeziya rasplavov i paika materialov 27:23Google Scholar
  9. 9.
    Ebrill N, Durandet Y, Strezov L (2001) Trans JWRI 30:351Google Scholar
  10. 10.
    Eustathopoulos N, Nicholas M, Drevet B (1999) Wettability at high temperature, Pergamon materials series, vol 3. Pergamon, Oxford, UKGoogle Scholar
  11. 11.
    Saiz E, Tomsia AP (2004) Nat Mater 3:903. doi: CrossRefGoogle Scholar
  12. 12.
    Sharps PR, Tomsia AP, Pask JA (1981) Acta Metall 29:855. doi: CrossRefGoogle Scholar
  13. 13.
    Voytovych R, Koltsov A, Hodaj F, Eustathopoulos N (2007) Acta Mater 55:6316. doi: CrossRefGoogle Scholar
  14. 14.
    Massalski TB (ed) (1990) Binary alloy phase diagrams, 2nd edn. ASM International, Metals Park, OhioGoogle Scholar
  15. 15.
    Molina JM, Voytovych R, Louis E, Eustathopoulos N (2007) Int J Adhes Adhes 27:394. doi: CrossRefGoogle Scholar
  16. 16.
    Hilya GP, Ivashchenko YN (1973) Dopovidi Akad Nauk Ukr SRS Ser B35:69Google Scholar
  17. 17.
    Keene BJ (1987) Surf Interface Anal 10:367. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • P. Protsenko
    • 1
  • O. Kozlova
    • 2
  • R. Voytovych
    • 2
  • N. Eustathopoulos
    • 2
    Email author
  1. 1.Department of Colloid ChemistryMSUMoscowRussia
  2. 2.SIMAP-ENSEEG, INPG, Domaine UniversitaireSaint Martin d’Hères CedexFrance

Personalised recommendations