Advertisement

Journal of Materials Science

, Volume 43, Issue 23–24, pp 7349–7353 | Cite as

High-pressure torsion for production of magnetoresistance in Cu–Co alloy

  • Kenichiro Suehiro
  • Shunichi Nishimura
  • Zenji HoritaEmail author
  • Seiji Mitani
  • Koki Takanashi
  • Hiroyasu Fujimori
Ultrafine-Grained Materials

Abstract

The process of high-pressure torsion (HPT) was applied to control the size and distribution of ferromagnetic Co particles in a Cu–Co alloy. Electron probe microanalysis, X-ray diffraction analysis, and transmission electron microscopy confirmed that the Co particles were significantly refined through fragmentation and dissolved with intense straining by HPT. Magnetoresistance appeared by ~2.5% at 77 K with an isotropic feature corresponding to giant magnetoresistance (GMR). It is demonstrated that HPT is a potential process for creating GMR in the Cu–Co alloy prepared by conventional ingot metallurgy.

Keywords

Electric Discharge Machine Accumulative Roll Bond Half Ring Lower Anvil Conventional Ingot Metallurgy 

Notes

Acknowledgements

This work was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan, in Priority Areas “Giant Straining Process for Advanced Materials Containing Ultra-High Density Lattice Defects” and in part by Kyushu University Interdisciplinary Programs in Education and Projects in Research Development (P&P).

References

  1. 1.
    Berkowitz AE, Mitchell JR, Carey MJ, Young AP, Zhang S, Spada FE et al (1992) Phys Rev Lett 68:3745. doi: https://doi.org/10.1103/PhysRevLett.68.3745 CrossRefGoogle Scholar
  2. 2.
    Xiao JQ, Jiang JS, Chien CL (1992) Phys Rev Lett 68:3749. doi: https://doi.org/10.1103/PhysRevLett.68.3749 CrossRefGoogle Scholar
  3. 3.
    Takanashi K, Park J, Sugawara T, Hono K, Goto A, Yasuda H et al (1996) Thin Solid Films 275:106. doi: https://doi.org/10.1016/0040-6090(95)07064-8 CrossRefGoogle Scholar
  4. 4.
    Wang W, Zhu F, Weng J, Xiao J, Lai W (1998) Appl Phys Lett 72:1118. doi: https://doi.org/10.1063/1.120942 CrossRefGoogle Scholar
  5. 5.
    Kim IJ, Takeda H, Echigoya J, Kataoka N, Fukamichi K, Shimada Y (1996) Mater Sci Eng A 217–218:363. doi: https://doi.org/10.1016/S0921-5093(96)10347-6 CrossRefGoogle Scholar
  6. 6.
    Aizawa T, Zhou C (2000) Mater Sci Eng A 285:1. doi: https://doi.org/10.1016/S0921-5093(00)00709-7 CrossRefGoogle Scholar
  7. 7.
    Larde R, Le Breton JM (2005) J Magn Magn Mater 290:1120. doi: https://doi.org/10.1016/j.jmmm.2004.11.471 CrossRefGoogle Scholar
  8. 8.
    Rattanasakulthong W, Sirisathitkul C (2005) Physica B 369:160. doi: https://doi.org/10.1016/j.physb.2005.08.010 CrossRefGoogle Scholar
  9. 9.
    Massalski TB, Murray JL, Bennett LH, Baker H, Kacprzak L (1987) Binary phase diagrams, vol 1. American Society of Metals, Metals Park, OH, p 758Google Scholar
  10. 10.
    Rentenberger C, Karnthaler HP (2005) Acta Mater 53:3031. doi: https://doi.org/10.1016/j.actamat.2005.03.016 CrossRefGoogle Scholar
  11. 11.
    Waitz T, Kazykhanov V, Karnthaler HP (2004) Acta Mater 52:137. doi: https://doi.org/10.1016/j.actamat.2003.08.036 CrossRefGoogle Scholar
  12. 12.
    Sabirov I, Pippan R (2005) Scr Mater 52:1293. doi: https://doi.org/10.1016/j.scriptamat.2005.02.017 CrossRefGoogle Scholar
  13. 13.
    Kai M, Horita Z, Langdon TG (2008) Mater Sci Eng A 488:117CrossRefGoogle Scholar
  14. 14.
    Senkov ON, Froes FH, Stolyarov VV, Valiev RZ, Liu J (1998) Nanostruct Mater 10:691. doi: https://doi.org/10.1016/S0965-9773(98)00107-X CrossRefGoogle Scholar
  15. 15.
    Sauvage X, Wetscher F, Pareige P (2005) Acta Mater 53:2127CrossRefGoogle Scholar
  16. 16.
    Sakai G, Horita Z, Langdon TG (2005) Mater Sci Eng A 393:344. doi: https://doi.org/10.1016/j.msea.2004.11.007 CrossRefGoogle Scholar
  17. 17.
    Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zehetbauer MJ, Zhu YT (2006) JOM 58(4):33. doi: https://doi.org/10.1007/s11837-006-0213-7 CrossRefGoogle Scholar
  18. 18.
    Segal VM, Reznikov VI, Drobyshevskiy AE, Kopylov VI (1981) Russ Metall 1:99Google Scholar
  19. 19.
    Saito Y, Utsunomiya H, Tsuji N, Sakai T (1999) Acta Mater 47:579. doi: https://doi.org/10.1016/S1359-6454(98)00365-6 CrossRefGoogle Scholar
  20. 20.
    Dutkiewicz J, Kuśnierz J, Maziarz W, Lejkowska M, Garbacz H, Lewandowska M et al (2005) Phys Status Solidi 202:2309. doi: https://doi.org/10.1002/pssa.200521235 CrossRefGoogle Scholar
  21. 21.
    Stolyarov VV, Gunderov DV, Popov AG, Puzanova TZ, Raab GI, Yavari AR et al (2002) J Magn Magn Mater 242–245:1399. doi: https://doi.org/10.1016/S0304-8853(01)01244-6 CrossRefGoogle Scholar
  22. 22.
    Vorhauer A, Rumpf K, Granitzer P, Kleber S, Krenn H, Pippan R (2006) Mater Sci Forum 503–504:299CrossRefGoogle Scholar
  23. 23.
    Suehiro K, Nishimura S, Horita Z (2008) Mater Trans 49:102. doi: https://doi.org/10.2320/matertrans.ME200725 CrossRefGoogle Scholar
  24. 24.
    Servi IS, Turnbull D (1966) Acta Metall 14:161. doi: https://doi.org/10.1016/0001-6160(66)90297-5 CrossRefGoogle Scholar
  25. 25.
    Fujii T, Tamura T, Kato M, Onaka S (2002) Microsc Microanal 8(Suppl. 2):1434CDGoogle Scholar
  26. 26.
    Suryanarayana C (2001) Prog Mater Sci 46:1. doi: https://doi.org/10.1016/S0079-6425(99)00010-9 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Kenichiro Suehiro
    • 1
  • Shunichi Nishimura
    • 1
  • Zenji Horita
    • 1
    Email author
  • Seiji Mitani
    • 2
  • Koki Takanashi
    • 2
  • Hiroyasu Fujimori
    • 3
  1. 1.Department of Materials Science and Engineering, Faculty of EngineeringKyushu UniversityFukuokaJapan
  2. 2.Institute for Materials ResearchTohoku UniversitySendaiJapan
  3. 3.Research Institute for Electric and Magnetic MaterialsSendaiJapan

Personalised recommendations