Journal of Materials Science

, Volume 43, Issue 23–24, pp 7495–7500 | Cite as

Grain growth in ultrafine grained aluminium processed by hydrostatic extrusion

  • Malgorzata LewandowskaEmail author
  • Tomasz Wejrzanowski
  • Krzysztof J. Kurzydłowski
Ultrafine-Grained Materials


Ultrafine grained materials can be produced by a number of techniques among which one can distinguish hydrostatic extrusion. In aluminium, this method can be used to obtain a structure with the grain size of 300 nm and high fraction of HAGBs (more than 70%). During annealing this structure undergoes significant changes which were evaluated quantitatively. Annealing for 1 h at temperatures up to 200 °C results in normal grain growth whereas at higher temperatures or for longer annealing times a transition from normal to abnormal growth is observed. The activation energy for low temperature regime is 43 kJ/mol whereas for high temperature annealing—128 kJ/mol. The former corresponds to grain boundary diffusion whereas the latter is close to activation energy of self diffusion in aluminium. The change in activation energy well corresponds to the transition in grain growth mechanism from normal to abnormal.


Severe Plastic Deformation Boundary Diffusion Equal Channel Angular Pressing Misorientation Angle Accumulative Roll Bonding 



This work was supported by Polish Ministry of Science and Higher Education (Grant No 3 T08A 06430). Hydrostatic extrusion experiment was carried out at the Institute of High Pressure Physics of Polish Academy of Sciences which is gratefully acknowledged.


  1. 1.
    Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zehetbauer MJ, Zhu YT (2006) JOM 58:33. doi: CrossRefGoogle Scholar
  2. 2.
    Lugo N, Llorca N, Cabrera JM, Horita Z (2008) Mater Sci Eng A 477:366. doi: CrossRefGoogle Scholar
  3. 3.
    Cherukuri B, Nedkova TS, Srinivasan R (2005) Mater Sci Eng A 310–411:394CrossRefGoogle Scholar
  4. 4.
    Kurzydłowski KJ (2006) Mater Sci Forum 503–504:341CrossRefGoogle Scholar
  5. 5.
    Lewandowska M, Pachla W, Kurzydłowski KJ (2007) Int J Mater Res (formerly Z.Metallkd) 98:172CrossRefGoogle Scholar
  6. 6.
    Humphreys FJ (1997) Acta Mater 45:4231. doi: CrossRefGoogle Scholar
  7. 7.
    Jazaeri H, Humphreys FJ (2004) Acta Mater 52:3251. doi: CrossRefGoogle Scholar
  8. 8.
    Ferry M, Hamilton NE, Humphreys FJ (2005) Acta Mater 53:1097. doi: CrossRefGoogle Scholar
  9. 9.
    Bowen JR, Mishin OV, Prangnell PB, Juul Jensen D (2002) Scr Mater 16:289. doi: CrossRefGoogle Scholar
  10. 10.
    Lauridsen EM, Poulsen HF, Nielsen SF, Juul Jensen D (2003) Acta Mater 51:4423. doi: CrossRefGoogle Scholar
  11. 11.
    Horita Z, Fujinami T, Nemoto M, Langdon TG (2001) J Mater Process Technol 117:288. doi: CrossRefGoogle Scholar
  12. 12.
    Yu CY, Sun PL, Kao PW, Chang CP (2004) Mater Sci Eng A 366:310. doi: CrossRefGoogle Scholar
  13. 13.
    Kamikawa N, Tsuji N, Huang X, Hansen N (2006) Acta Mater 54:3055. doi: CrossRefGoogle Scholar
  14. 14.
    Mehnert K, Klimanek P (1997) Comput Mater Sci 9:261. doi: CrossRefGoogle Scholar
  15. 15.
    Okabe A, Boots B, Sugihara K (1992) Spatial tesselation: concepts and application of voronoi diagrams. Wiley, New YorkGoogle Scholar
  16. 16.
    Chauhan M, Mohamed FA (2006) Mater Sci Eng A 427:7. doi: CrossRefGoogle Scholar
  17. 17.
    Wang J, Iwahashi Y, Horita Z, Furukawa M, Nemoto M, Valiev RZ et al (1996) Acta Mater 44:2973. doi: CrossRefGoogle Scholar
  18. 18.
    Lian J, Valiev RZ, Baudelet B (1995) Acta Mater 43:4165CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Malgorzata Lewandowska
    • 1
    Email author
  • Tomasz Wejrzanowski
    • 1
  • Krzysztof J. Kurzydłowski
    • 1
  1. 1.Faculty of Materials Science and EngineeringWarsaw University of TechnologyWarsawPoland

Personalised recommendations