Advertisement

Journal of Materials Science

, Volume 43, Issue 16, pp 5609–5617 | Cite as

Synthesis of poly(ethylene glycol) functionalized MWNTs and their inclusion complexes with α-cyclodextrin

  • Yexiang Wang
  • Hua Xiong
  • Yong Gao
  • Huaming LiEmail author
Article

Abstract

Poly(ethylene glycol) (PEG) functionalized multiwalled carbon nanotubes (MWNTs), prepared by coupling of isocyanate-decorated MWNTs with PEG of different molecular weights (Mn = 400, 1000, 2000, and 4000 g/mol), were used to form inclusion complexes (ICs) with α-cyclodextrin (α-CD) through the grafted PEG chains being threaded with α-CD rings in aqueous solution. The FTIR, TGA, UV-Vis, and scanning electron microscopy (SEM) techniques were employed to characterize the formed ICs. The ICs formation time was monitored by UV-Vis spectroscopy, and the results indicated that the inclusion interaction between MWNT surface anchored PEG chains and α-CD was dependent on the molecular weight of PEG. The grafted PEG with molecular weights of 4000 and 2000 g/mol, respectively, can form ICs with α-CD, while the grafted PEG with molecular weights of 1000 and 400 g/mol, respectively, are difficult to form ICs with α-CD due to the steric hindrance from nanotubes. The stoichiometry value determined by TGA indicated that the ratio of ethylene glycol (EG) unit to α-CD in the resulted ICs was about 15:1. In addition, the morphology of the ICs was observed by SEM and transmission electron microscopy (TEM).

Keywords

Isocyanate Isocyanate Group Anhydrous Toluene Graft Density MWNT Surface 

Notes

Acknowledgement

Financial support from NSF China (no. 20674065), Program for NCET, SRF for ROCS, SEM, and the Key Project of Scientific Research Funds of Hunan Provincial Education Department (07A072) is greatly acknowledged.

References

  1. 1.
    Ajayan PM (1999) Chem Rev 99:1787. doi: https://doi.org/10.1021/cr970102g CrossRefGoogle Scholar
  2. 2.
    Dai HJ (2002) Acc Chem Res 35:1035. doi: https://doi.org/10.1021/ar0101640 CrossRefGoogle Scholar
  3. 3.
    Hirsch A (2002) Angew Chem Int Ed 41:1853. doi:10.1002/1521-3773(20020603)41:11<1853::AID-ANIE1853>3.0.CO;2-NCrossRefGoogle Scholar
  4. 4.
    Wang G, Li YX, Huang YH (2005) J Phys Chem B 109:10957. doi: https://doi.org/10.1021/jp050030u CrossRefGoogle Scholar
  5. 5.
    Blake R, Gunko YK, Coleman J, Cadek M, Fonseca A, Nagy JB (2004) J Am Chem Soc 126:10226. doi: https://doi.org/10.1021/ja0474805 CrossRefGoogle Scholar
  6. 6.
    Ramanathan T, Fisher FT, Ruoff RS, Brinson LC (2005) Chem Mater 17:1290. doi: https://doi.org/10.1021/cm048357f CrossRefGoogle Scholar
  7. 7.
    Wang J, Liu GD, Jan MR (2004) J Am Chem Soc 126:3010. doi: https://doi.org/10.1021/ja031723w CrossRefGoogle Scholar
  8. 8.
    Kam NWS, Dai HJ (2005) J Am Chem Soc 127:6021. doi: https://doi.org/10.1021/ja050062v CrossRefGoogle Scholar
  9. 9.
    Chattopadhyay J, Cortez FJ, Chakraborty S, Slater NKH, Billups WE (2006) Chem Mater 18:5864. doi: https://doi.org/10.1021/cm0611082 CrossRefGoogle Scholar
  10. 10.
    Kahn MGC, Banerjee S, Wong SS (2002) Nano Lett 2:1215. doi: https://doi.org/10.1021/nl025755d CrossRefGoogle Scholar
  11. 11.
    Chen RJ, Zhan YG, Wang DW, Dai HJ (2001) J Am Chem Soc 123:3838. doi: https://doi.org/10.1021/ja010172b CrossRefGoogle Scholar
  12. 12.
    Fernando KAS, Lin Y, Sun YP (2004) Langmuir 20:4777. doi: https://doi.org/10.1021/la036217z CrossRefGoogle Scholar
  13. 13.
    Zhao B, Hu H, Haddon HC (2004) Adv Funct Mater 14:71. doi: https://doi.org/10.1002/adfm.200304440 CrossRefGoogle Scholar
  14. 14.
    Sano M, Kamino A, Shinkai S (2001) Angew Chem Int Ed 40:4661. doi:10.1002/1521-3773(20011217)40:24<4661::AID-ANIE4661>3.0.CO;2-VCrossRefGoogle Scholar
  15. 15.
    Sun YP, Fu K, Lin Y, Huang WJ (2002) Acc Chem Res 35:1096. doi: https://doi.org/10.1021/ar010160v CrossRefGoogle Scholar
  16. 16.
    Hong CY, You YZ, Pan CY (2005) Chem Mater 17:2247. doi: https://doi.org/10.1021/cm048054l CrossRefGoogle Scholar
  17. 17.
    Kong H, Li WW, Gao C, Yan DY, Jin YZ, Walton DRM et al (2004) Macromolecules 37:6683. doi: https://doi.org/10.1021/ma048682o CrossRefGoogle Scholar
  18. 18.
    Huang W, Fernando S, Allard LF, Sun YP (2003) Nano Lett 3:565. doi: https://doi.org/10.1021/nl0340834 CrossRefGoogle Scholar
  19. 19.
    Pompeo F, Resasco DE (2002) Nano Lett 2:369. doi: https://doi.org/10.1021/nl015680y CrossRefGoogle Scholar
  20. 20.
    Hazani M, Naaman R, Hennrich F, Kappes MM (2003) Nano Lett 3:153. doi: https://doi.org/10.1021/nl025874t CrossRefGoogle Scholar
  21. 21.
    Pantarotto D, Partidos CD, Graff R, Hoebeke J, Briand JP, Prato M et al (2003) J Am Chem Soc 125:6160. doi: https://doi.org/10.1021/ja034342r CrossRefGoogle Scholar
  22. 22.
    Baker SE, Cai W, Lasseter TL, Weidkamp KP, Hamers RJ (2002) Nano Lett 2:1413. doi: https://doi.org/10.1021/nl025729f CrossRefGoogle Scholar
  23. 23.
    Huang W, Taylor S, Fu K, Lin Y, Zhang D, Hanks TW et al (2002) Nano Lett 2:311. doi: https://doi.org/10.1021/nl010095i CrossRefGoogle Scholar
  24. 24.
    Yang M, Gao Y, Li HM, Adronov A (2007) Carbon 45:2327. doi: https://doi.org/10.1016/j.carbon.2007.07.021 CrossRefGoogle Scholar
  25. 25.
    Szejtli J (1998) Chem Rev 98:1743. doi: https://doi.org/10.1021/cr970022c CrossRefGoogle Scholar
  26. 26.
    Harada A, Li J, Kamachi M (1993) Macromolecules 26:5698. doi: https://doi.org/10.1021/ma00073a026 CrossRefGoogle Scholar
  27. 27.
    Harada A, Li J, Kamachi M (1994) J Am Chem Soc 116:3192. doi: https://doi.org/10.1021/ja00087a004 CrossRefGoogle Scholar
  28. 28.
    Harada A, Okada M, Li J, Kamachi M (1995) Macromolecules 28:8406. doi: https://doi.org/10.1021/ma00128a060 CrossRefGoogle Scholar
  29. 29.
    Harada A, Suzuki S, Okada M, Kamachi M (1996) Macromolecules 29:5611. doi: https://doi.org/10.1021/ma960428b CrossRefGoogle Scholar
  30. 30.
    Harada A, Nishiyama T, Kawaguchi Y, Okada M, Kamachi M (1997) Macromolecules 30:7115. doi: https://doi.org/10.1021/ma970680z CrossRefGoogle Scholar
  31. 31.
    Huang L, Allen E, Tonelli AE (1998) Polymer (Guildf) 39:4857. doi: https://doi.org/10.1016/S0032-3861(97)00568-5 CrossRefGoogle Scholar
  32. 32.
    Huang L, Allen E, Tonelli AE (1999) Polymer (Guildf) 40:3211. doi: https://doi.org/10.1016/S0032-3861(98)00529-1 CrossRefGoogle Scholar
  33. 33.
    Yoshida K, Shimomura T, Ito K, Hayakawa R (1999) Langmuir 15:910. doi: https://doi.org/10.1021/la9812471 CrossRefGoogle Scholar
  34. 34.
    Kawaguchi Y, Nishiyama T, Okada M, Kamachi M, Harada A (2000) Macromolecules 33:4472. doi: https://doi.org/10.1021/ma992103b CrossRefGoogle Scholar
  35. 35.
    He LH, Huang J, Chen YM, Liu LP (2005) Macromolecules 38:3351. doi: https://doi.org/10.1021/ma047748c CrossRefGoogle Scholar
  36. 36.
    Wang ZM, Chen YM (2007) Macromolecules 40:3402. doi: https://doi.org/10.1021/ma0702593 CrossRefGoogle Scholar
  37. 37.
    Ogoshi T, Takashima Y, Yamaguchi H, Harada A (2007) J Am Chem Soc 129:4878. doi: https://doi.org/10.1021/ja070457+ CrossRefGoogle Scholar
  38. 38.
    Jia ZJ, Wang ZY, Liang J, Wei BQ, Wu DH (1999) Carbon 37:903. doi: https://doi.org/10.1016/S0008-6223(98)00229-2 CrossRefGoogle Scholar
  39. 39.
    Liu YQ, Yao ZL, Adronov A (2005) Macromolecules 38:1172. doi: https://doi.org/10.1021/ma048273s CrossRefGoogle Scholar
  40. 40.
    Casu B, Reggiani M (1964) J Polym Sci 7(Part C):171Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Yexiang Wang
    • 1
  • Hua Xiong
    • 1
  • Yong Gao
    • 1
  • Huaming Li
    • 1
    • 2
    Email author
  1. 1.Institute of Polymer Science, Chemistry CollegeXiangtan UniversityXiangtanPeople’s Republic of China
  2. 2.Key Lab of Environment-Friendly Chemistry and Application in Ministry of EducationXiangtan UniversityXiangtanPeople’s Republic of China

Personalised recommendations