Journal of Materials Science

, Volume 43, Issue 16, pp 5579–5584 | Cite as

Induced effect of transparent substrate composition on polypyrrole thin film

  • D. MartelEmail author
  • H. Nguyen CongEmail author
  • J. L. Gautier


For thin films of tin dioxide, indium oxide and indium tin oxide, the substrate nature plays a determining role on their structural and morphological characteristics, which modified noticeably their optical property. On these substrates, the electropolymerization characteristics of polypyrrole exhibited the profound modifications related to the active sites for nuclei formation and their growth. These modifications induced the important change in charge transport characteristics of polypyrrole thin films.


SnO2 Pyrrole In2O3 Polypyrrole Doping Anion 



This work is part of research program of UMR 7177 CNRS/ULP. The authors acknowledge the support of ECOS/CONICYT (Action C04E02). J.L.G. thanks FONDECYT (project 1050178).


  1. 1.
    Leech D (1996) In: Lyons MEG (ed) Electroactive polymer electrochemistry, part 2: methods and applications. Plenum Press, New York, p 268Google Scholar
  2. 2.
    Kuwabata S, Nishizawa M, Martin CR, Yoneyama H (1997) J Electrochem Soc 144:1923. doi: CrossRefGoogle Scholar
  3. 3.
    Leventis J (1988) US Patent 5,457,564Google Scholar
  4. 4.
    Yoneyama H, Shoji Y, Kawai K (1989) Chem Lett 1067. doi: CrossRefGoogle Scholar
  5. 5.
    Chen CC, Bose CSC, Rajeshwar K (1988) J Electroanal Chem 350:161CrossRefGoogle Scholar
  6. 6.
    Holdcroft S, Funt BL (1988) J Electroanal Chem 240:89. doi: CrossRefGoogle Scholar
  7. 7.
    Cosnier S, Innocent C (1992) J Electroanal Chem 328:361. doi: CrossRefGoogle Scholar
  8. 8.
    Janda P, Weber J (1991) J Electroanal Chem 300:119. doi: CrossRefGoogle Scholar
  9. 9.
    Rick J, Chou TC (2006) Biosens Bioelectron 22:329. doi: CrossRefGoogle Scholar
  10. 10.
    Nguyen Cong H, El Abbassi K, Chartier P (2000) Electrochem Solid-State Lett 3(4):192. doi: CrossRefGoogle Scholar
  11. 11.
    Nguyen Cong H, de la Guadarrama V, Gautier JL, Chartier P (2002) J N Mat Electrochem Syst 5:35Google Scholar
  12. 12.
    Nguyen Cong H, El Abbassi K, Chartier P (2002) Electrochem J 149(5):A525CrossRefGoogle Scholar
  13. 13.
    Nguyen Cong H, de la Guadarrama V, Gautier JL, Chartier P (2003) Electrochim Acta 48:2389. doi: CrossRefGoogle Scholar
  14. 14.
    Marco JF, Gancedo JR, Nguyen Cong H, Abbassi KEl, del Canto M, Rios E, Gautier Jl (2008) Mater Res Bull 43:2413CrossRefGoogle Scholar
  15. 15.
    Cheng SA, Otero TF (2002) Synth Met 129:53. doi: CrossRefGoogle Scholar
  16. 16.
    Hwang BJ, Santhanam R, Lin YL (2000) J Electrochem Soc 147(6):2252. doi: CrossRefGoogle Scholar
  17. 17.
    Nguyen Thi Le H, Garcia B, Deslouis C, Le Xuan Q (2001) Electrochim Acta 46:4259. doi: CrossRefGoogle Scholar
  18. 18.
    Ferreira CA, Aeiyach S, Coulaud A, Lacaza PC (1999) J Appl Electrochem 29:259. doi: CrossRefGoogle Scholar
  19. 19.
    Cossement D, Plumeir F, Delhalle J, Hevesi L, Mekhalif Z (2003) Synth Met 138:529-0. doi: CrossRefGoogle Scholar
  20. 20.
    Rodriguez I, Marcos ML, Gonzalez-Velasco J (1987) Electrochim Acta 32:1181. doi: CrossRefGoogle Scholar
  21. 21.
    Lee JY, Tan TC (1990) J Electrochem Soc 137:1402. doi: CrossRefGoogle Scholar
  22. 22.
    Martel D, Nguyen Cong H, Molinari M, Ebothe J, Kityk IV (2008) J Math Sci 43:3486CrossRefGoogle Scholar
  23. 23.
    Nguyen Cong H, El Abbassi K, Gautier JL, Chartier P (2005) Electrochim Acta 50:1369. doi: CrossRefGoogle Scholar
  24. 24.
    Rodriguez J, Grande HJ, Otero TF (1997) In: Nalwa HS (ed) Handbook of organic conductive molecules and polymers, vol 2. Wiley and Sons, New York, p 415 and 448Google Scholar
  25. 25.
    Warren LF, Anderson DP (1987) J Electrochem Sci Technol 134:101. doi: CrossRefGoogle Scholar
  26. 26.
    Diaz AT, Bargon J (1986) In: Skotheim T (ed) Handbook of conducting polymer. M. Dekker, New York and Basel, p 81Google Scholar
  27. 27.
    Singh RN, Hamdani M, Koenig JF, Poillerat G, Gautier JL, Chartier P (1990) J Appl Electrochem 20:442. doi: CrossRefGoogle Scholar
  28. 28.
    Restovic A, Poillerat G, Koenig JF, Gautier JL, Chartier P (1991) Thin Solid Films 199:139. doi: CrossRefGoogle Scholar
  29. 29.
    Ríos E, Poillerat G, Koenig JF, Gautier JL, Chartier P (1995) Thin Solid Films 264:18–24. doi: CrossRefGoogle Scholar
  30. 30.
    Bouchenaki C (1991) Thèse de Doctorat de l’Université Louis Pasteur, Strasbourg (France)Google Scholar
  31. 31.
    Preusser S, Cocivera M (1987) Sol Energ Mater 15:175. doi: CrossRefGoogle Scholar
  32. 32.
    Sze SM (1981) Physics of semiconductor devices, 2nd edn. Wiley, New YorkGoogle Scholar
  33. 33.
    Diaz AF, Castillo JL, Logan JA, Lee WY (1981) J Elctroanal Chem 129:115CrossRefGoogle Scholar
  34. 34.
    Saidman SB, Bessone JB (2002) J Electroanal Chem 521:87. doi: CrossRefGoogle Scholar
  35. 35.
    Harisson JA, Thirsk HR (1971) In: Bard AJ (ed) Electroanal Chem, vol 5. Academic Press, New York, p 67Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Laboratoire d’Electrochimie et de Chimie Physique du Coprs Solide, LC3 – UMR7177CNRS-Université Louis PasteurStrasbourgFrance
  2. 2.Laboratorio de Fisicoquímica y Electroquímica de Sólidos, Departamento de Química de los Materiales, Facultad de Química y BiologíaUniversidad de Santiago de ChileSantiagoChile

Personalised recommendations