Journal of Materials Science

, Volume 43, Issue 16, pp 5662–5665 | Cite as

Negative magnetization in La0.75Nd0.25CrO3 perovskite

  • V. A. KhomchenkoEmail author
  • I. O. Troyanchuk
  • R. Szymczak
  • H. Szymczak


Complex oxides of transition metals (TM) with the perovskite structure have attracted great interest due to a whole series of unique properties such as high-temperature superconductivity, colossal magnetoresistance, coexisting (anti)ferromagnetism, and (anti)ferroelectricity. Recently, several groups have reported negative magnetization observed below a certain temperature on cooling of a sample in a low or a medium (up to 4 kOe) magnetic field. This phenomenon was discovered for LaVO3 [1], YVO3 [2], La1−xGdxMnO3 [3], Nd1−xCaxMnO3 [4], GdCrO3 [5], La1−xPrxCrO3 [6], and some others perovskites. In the present paper, we report on the reversal of the magnetization for LaCrO3–NdCrO3 solids.

The end compounds, LaCrO3 and NdCrO3, have an orthorhombic perovskite structure at room temperature (space group Pbnm (Pnma)) [7]. The exchange coupling between the magnetic moments of the Cr3+ ions in LaCrO3is predominantly antiferromagnetic. G-type of antiferromagnetic structure is...


LaCrO3 Paramagnetic Effect Negative Magnetization Spontaneous Magnetic Moment Weak Ferromagnetic Moment 


  1. 1.
    Mahajan AV, Johnston DC, Torgeson DR, Borsa F (1992) Phys Rev B 46:10966. doi: CrossRefGoogle Scholar
  2. 2.
    Ren Y, Palstra TTM, Khomskii DI, Nugroho AA, Menovsky AA, Sawatzky GA (2000) Phys Rev B 62:6577. doi: CrossRefGoogle Scholar
  3. 3.
    Hemberger J, Lobina S, von Krug Nidda H-A, Tristan N, Ivanov VYu, Mukhin AA, Balbashov AM, Loidl A (2004) Phys Rev B 70:024414. doi: CrossRefGoogle Scholar
  4. 4.
    Troyanchuk IO, Khomchenko VA, Chobot GM, Vasil’ev AN, Eremenko VV, Sirenko VA, Shvedun MYu, Szymczak H, Szymczak R (2003) J Phys Condens Matter 15:8865. doi: CrossRefGoogle Scholar
  5. 5.
    Yoshii K (2001) J Solid State Chem 159:204. doi: CrossRefGoogle Scholar
  6. 6.
    Yoshii K, Nakamura A, Ishii Y, Morii Y (2001) J Solid State Chem 162:84. doi: CrossRefGoogle Scholar
  7. 7.
    Shamir N, Shaked H, Shtrikman S (1981) Phys Rev B 24:6642. doi: CrossRefGoogle Scholar
  8. 8.
    Dzyaloshinsky I (1958) J Phys Chem Solids 4:241. doi: CrossRefGoogle Scholar
  9. 9.
    Moriya T (1960) Phys Rev 117:635. doi: CrossRefGoogle Scholar
  10. 10.
    Hornreich RM, Komet Y, Nolan R, Wanklyn BM, Yaeger I (1975) Phys Rev B 12:5094. doi: CrossRefGoogle Scholar
  11. 11.
    Ren Y, Nugroho AA, Menovsky AA, Strempfer J, Rütt U, Iga F, Takabatake T, Kimball CW (2003) Phys Rev B 67:014107. doi: CrossRefGoogle Scholar
  12. 12.
    Chakraborty KR, Yusuf SM, Krishna PSR, Ramanadham M, Tyagi AK (2004) Pramana- J Phys 63:251CrossRefGoogle Scholar
  13. 13.
    Chakraborty KR, Das A, Yusuf SM, Krishna PSR, Tyagi AK (2006) J Magn Magn Mater 301:74. doi: CrossRefGoogle Scholar
  14. 14.
    Artem’ev GG, Kadomtseva AM, Milov VN, Lukina MM, Mukhin AA (1995) J Magn Magn Mater 140–144:2157CrossRefGoogle Scholar
  15. 15.
    Khomchenko VA, Troyanchuk IO, Tovar M, Szymczak R, Szymczak H (unpublished)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • V. A. Khomchenko
    • 1
    • 2
    Email author
  • I. O. Troyanchuk
    • 1
  • R. Szymczak
    • 3
  • H. Szymczak
    • 3
  1. 1.Joint Institute of Solid State and Semiconductor PhysicsNational Academy of Sciences of BelarusMinskBelarus
  2. 2.Department of Ceramics and Glass Engineering & CICECOUniversity of AveiroAveiroPortugal
  3. 3.Institute of PhysicsPolish Academy of SciencesWarsawPoland

Personalised recommendations