Advertisement

Journal of Materials Science

, Volume 43, Issue 16, pp 5591–5598 | Cite as

Effect of oxygen partial pressure on the oxidation behaviour of an yttria dispersion strengthened NiCr-base alloy

  • E. Essuman
  • G. H. Meier
  • J. ZurekEmail author
  • M. Hänsel
  • L. Singheiser
  • T. Norby
  • W. J. Quadakkers
Article

Abstract

An yttria dispersion strengthened NiCr-base alloy was studied with respect to isothermal oxidation behaviour at 1000 °C and 1050 °C in high- and low-pO2 gases, i.e. Ar–O2 and Ar(−H2)–H2O. The scale growth kinetics, morphology and composition were studied by thermogravimetry in combination with SEM/EDX and SNMS. Due to Y doping the surface scale is very protective and initially grows predominantly by inward oxygen diffusion. Local formation of mainly outwardly growing oxide nodules occurs after longer oxidation times and is related to metallic protrusions formed as a result of internal oxidation of the minor alloying addition aluminium. The differences in scale morphology in the various environments are related to the effect of the gas composition on scale grain size and on the relative amounts of inward scale growth. Possibly the pO2 dependence of the Ti-solubility in the chromia scale and/or hydrogen doping of the oxide plays an additional role in the scale growth process.

Keywords

Oxide Scale Reactive Element Isothermal Oxidation Scale Growth Chromia Scale 

Notes

Acknowledgements

The authors are grateful to Mr. Cosler for carrying out the TG tests and Mr. Wessel for the SEM analyses. The authors are also thankful to the Emmy Noether Program of the German Research Foundation for the financial support.

References

  1. 1.
    Nickel H (1993) Pure Appl Chem 65(12):2481. doi: https://doi.org/10.1351/pac199365122481 CrossRefGoogle Scholar
  2. 2.
    Akhtar A, Hegde S, Reed RC (2006) JOM 58:37. doi: https://doi.org/10.1007/s11837-006-0066-0 CrossRefGoogle Scholar
  3. 3.
    Wallwork GR (1976) Rep Prog Phys 39:401. doi: https://doi.org/10.1088/0034-4885/39/5/001 CrossRefGoogle Scholar
  4. 4.
    Benjamin JS (1970) Metall Trans 1:2943Google Scholar
  5. 5.
    Gilman PS, Benjamin JS (1983) Annu Rev Mater Sci 13:279. doi: https://doi.org/10.1146/annurev.ms.13.080183.001431 CrossRefGoogle Scholar
  6. 6.
    Quadakkers WJ (1990) Werkst Korros 41:659. doi: https://doi.org/10.1002/maco.19900411204 CrossRefGoogle Scholar
  7. 7.
    Hou PY, Stringer J (1995) Mater Sci Eng A 202:1. doi: https://doi.org/10.1016/0921-5093(95)09798-8 CrossRefGoogle Scholar
  8. 8.
    Ramanarayanan TA, Ayer R, Petkovic-Luton R, Leta DP (1988) Oxid Met 29(5/6):445. doi: https://doi.org/10.1007/BF00666845 CrossRefGoogle Scholar
  9. 9.
    Zhang Y, Zhu D, Shores DA (1995) Acta Metall 43(11):4015. doi: https://doi.org/10.1016/0956-7151(95)00093-B CrossRefGoogle Scholar
  10. 10.
    Przybylski K, Garratt-Reed AJ, Yurek GJ (1988) J Electrochem Soc 135(2):509. doi: https://doi.org/10.1149/1.2095646 CrossRefGoogle Scholar
  11. 11.
    Michalik M, Hänsel M, Zurek J, Singheiser L, Quadakkers WJ (2005) Mater High Temp 22:213CrossRefGoogle Scholar
  12. 12.
    Żurek J, Young DJ, Essuman E, Hänsel M, Penkalla HJ, Niewolak L et al (2008) Mater Sci Eng A 477:259. doi: https://doi.org/10.1016/j.msea.2007.05.035 CrossRefGoogle Scholar
  13. 13.
    Galerie A, Wouters Y, Caillet M (2001) Mater Sci Forum 369–372:231CrossRefGoogle Scholar
  14. 14.
    Ennis PJ, Quadakkers WJ (1987) In: Marriot JB, Merz M, Nihoul J, Ward JO (eds) High temperature alloys—their exploitable potential, JRC Petten, NL, 15–17th Oct 1985, Elsevier Applied Science London, New York, EUR 11365, p 465Google Scholar
  15. 15.
    Huczkowski P, Ertl S, Piron-Abellan J, Christiansen N, Höfler T, Shemet V et al (2005) Mater High Temp 22:253CrossRefGoogle Scholar
  16. 16.
    Hammer JE, Laney SJ, Jackson RW, Coyne K, Pettit FS, Meier GH (2007) Oxid Met 67(1/2):1. doi: https://doi.org/10.1007/s11085-006-9041-y CrossRefGoogle Scholar
  17. 17.
    Krupp U, Christ H-J (1999) Oxid Met 52(3/4):277. doi: https://doi.org/10.1023/A:1018843612011 CrossRefGoogle Scholar
  18. 18.
    Quadakkers WJ, Holzbrecher H, Briefs KG, Beske H (1989) Oxid Met 32(1/2):67. doi: https://doi.org/10.1007/BF00665269 CrossRefGoogle Scholar
  19. 19.
    Quadakkers WJ, Holzbrecher H, Briefs KG, Beske H (1988) Proceedings of the European Colloquium organized by Commission of the European Communities Directorate General: Science, Research and Development, Petten Establishment, Petten, (N.H.), The Netherlands, p 155Google Scholar
  20. 20.
    Ecer GM, Meier GH (1979) Oxid Met 13(2):159. doi: https://doi.org/10.1007/BF00611977 CrossRefGoogle Scholar
  21. 21.
    Ecer GM, Singh RB, Meier GH (1982) Oxid Met l8:53Google Scholar
  22. 22.
    Haugsrud R, Gunnaes AE, Simon CR (2001) Oxid Met 56(5/6):453. doi: https://doi.org/10.1023/A:1012541432639 CrossRefGoogle Scholar
  23. 23.
    Pieraggi B, Rapp RA (1993) J Electrochem Soc 140(10):2844. doi: https://doi.org/10.1149/1.2220920 CrossRefGoogle Scholar
  24. 24.
    Pieraggi B, Rapp RA, Hirth JP (1995) Oxid Met 44(1/2):63. doi: https://doi.org/10.1007/BF01046723 CrossRefGoogle Scholar
  25. 25.
    Strawbridge A, Rapp RA (1994) J Electrochem Soc 141(7):1905. doi: https://doi.org/10.1149/1.2055025 CrossRefGoogle Scholar
  26. 26.
    Hou P, Brown I, Stringer J (1991) J Nucl Instrum Methods B59(60):1345. doi: https://doi.org/10.1016/0168-583X(91)95827-Z CrossRefGoogle Scholar
  27. 27.
    Jackson RW, Leonard JP, Pettit FS, Meier GH, Solid State Ionics (in press)Google Scholar
  28. 28.
    Jackson RW, Leonard JP, Niewolak L, Quadakkers WJ, Pettit FS, Meier GH, Mat Sci Forum (in press)Google Scholar
  29. 29.
    Gil A, Mrowec S, Jedliński J (1992) Solid State Ionics 58(1–2):13. doi: https://doi.org/10.1016/0167-2738(92)90005-A CrossRefGoogle Scholar
  30. 30.
    Hou P, Stringer J (1988) Oxid Met 29(1/2):45 CrossRefGoogle Scholar
  31. 31.
    Quadakkers WJ, Jedlinski J, Schmidt K, Krasovec M, Borchardt G, Nickel H (1991) Appl Surf Sci 47:261. doi: https://doi.org/10.1016/0169-4332(91)90040-Q CrossRefGoogle Scholar
  32. 32.
    Quadakkers WJ, Norton JF, Penkalla J, Breuer U, Gil A, Rieck T, Hänsel M (1996) In: Newcomb SB, Little JA (eds) 3rd international conference on microscopy of oxidation, Cambridge, UK, p 221Google Scholar
  33. 33.
    Crone Uvd, Hänsel M, Quadakkers WJ, Vaßen R (1997) Fresenius J Anal Chem 358:230. doi: https://doi.org/10.1007/s002160050391 CrossRefGoogle Scholar
  34. 34.
    Pint BA (2003) Proceedings from the John Stringer symposium on high temperature corrosion, 5–8 Nov 2001, ASM International, Indianapolis, IN, p 9Google Scholar
  35. 35.
    Essuman E, Meier GH, Zurek J, Hänsel M, Quadakkers WJ (2008) Oxid Met 69(3/4):143. doi: https://doi.org/10.1007/s11085-007-9090-x CrossRefGoogle Scholar
  36. 36.
    Essuman E, Meier GH, Żurek J, Hänsel M, Quadakkers WJ (2007) Scr Mater 57(9):845. doi: https://doi.org/10.1016/j.scriptamat.2007.06.058 CrossRefGoogle Scholar
  37. 37.
    Naoumidis A, Schulze HA, Jungen W, Lersch P (1991) J Eur Ceram Soc 7:55–63. doi: https://doi.org/10.1016/0955-2219(91)90054-4 CrossRefGoogle Scholar
  38. 38.
    Norby T (1986) J Phys 47:849Google Scholar
  39. 39.
    Norby T (1990) Solid State Ionics 41–42:857. doi: https://doi.org/10.1016/0167-2738(90)90138-H CrossRefGoogle Scholar
  40. 40.
    Quadakkers WJ, Viefhaus H (1995) In: Grabke HJ (ed) Guidelines for methods of testing and research in high temperature corrosion. EFC Publications No. 14, The Institute of Materials, London, p 189Google Scholar
  41. 41.
    Quadakkers WJ, Speier W, Nickel H (1991) Appl Surf Sci 52:271. doi: https://doi.org/10.1016/0169-4332(91)90069-V CrossRefGoogle Scholar
  42. 42.
    Rabbani R, Ward LP, Strafford KN (2000) Oxid Met 54(1/2):139–153. doi: https://doi.org/10.1023/A:1004658814608 CrossRefGoogle Scholar
  43. 43.
    Nagai H, Okabayashi M (1981) Trans Japan Inst Met 22:691CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • E. Essuman
    • 1
    • 2
  • G. H. Meier
    • 3
  • J. Zurek
    • 1
    Email author
  • M. Hänsel
    • 1
  • L. Singheiser
    • 1
  • T. Norby
    • 2
  • W. J. Quadakkers
    • 1
  1. 1.Forschungszentrum Jülich, IEF-2JulichGermany
  2. 2.Department of ChemistryUniversity of Oslo, FERMiOOsloNorway
  3. 3.University of PittsburghPittsburghUSA

Personalised recommendations