Advertisement

Journal of Materials Science

, Volume 43, Issue 15, pp 5291–5299 | Cite as

Large-scale electrochemical synthesis of SnO2 nanoparticles

  • Wei Chen
  • Debraj Ghosh
  • Shaowei Chen
Article

Abstract

Tin oxide nanoparticles were synthesized by electrochemical oxidation of a tin metal sheet in a non-aqueous electrolyte containing NH4F. The as-prepared nanoparticles were then thermally annealed at 700 °C for 6 h. The resulting particles were characterized by a variety of experimental techniques, including X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), Raman, UV-visible, and photoluminescence (PL) spectroscopy. The XRD patterns clearly showed that the amorphous phase of the as-synthesized SnO2 particles was transformed into a rutile-type crystalline structure after thermal treatment; and from the line broadening of the XRD peaks, the average size of the annealed particles was found to be 15.4, 12.5, 11.8 nm for the particles initially synthesized at 20, 30, and 40 V, respectively. Consistent results were also observed in HRTEM measurements which showed clear crystalline lattice fringes of the calcined nanoparticles, as compared to the featureless profiles of the as-produced counterparts. In Raman spectroscopic studies, three dominant peaks were observed at 480, 640, and 780 cm−1 which were ascribed to the E1g, A1g, and B2g Raman active vibration modes, respectively, and the wavenumbers of these peaks blue-shifted with decreasing particle size. Additionally, a broad strong emission band was observed in room-temperature photoluminescence measurements.

Keywords

SnO2 NH4F SnO2 Nanoparticles NiPd SnO2 Sample 

Notes

Acknowledgements

This work was supported in part by the National Science Foundation (CHE-0718170 and DMR-0804049). The powder X-ray diffraction data in this work were recorded on an instrument supported by the NSF Major Research Instrumentation (MRI) Program under Grant No. CHE-0521569. We thank the National Center for Electron Microscopy at Lawrence Berkeley National Laboratory for use of its facilities. We also thank Prof. J. Z. Zhang, T. Olson and R. Newhouse (UCSC) for access to the Raman spectrometer, and Prof. S. Oliver and D. Rogow (UCSC) for assistance in XRD data acquisition.

References

  1. 1.
    Ferrere S, Zaban A, Gregg BA (1997) J Phys Chem B 101:4490. doi: https://doi.org/10.1021/jp970683d CrossRefGoogle Scholar
  2. 2.
    Wang Y, Lee JY, Zeng HC (2005) Chem Mater 17:3899. doi: https://doi.org/10.1021/cm050724f CrossRefGoogle Scholar
  3. 3.
    Wang Y, Zeng HC, Lee JY (2006) Adv Mater 18:645. doi: https://doi.org/10.1002/adma.200501883 CrossRefGoogle Scholar
  4. 4.
    Stampfl SR, Chen Y, Dumesic JA, Niu CM, Hill CG (1987) J Catal 105:445. doi: https://doi.org/10.1016/0021-9517(87)90072-8 CrossRefGoogle Scholar
  5. 5.
    Zhang Y, Kolmakov A, Lilach Y, Moskovits M (2005) J Phys Chem B 109:1923. doi: https://doi.org/10.1021/jp045509l CrossRefGoogle Scholar
  6. 6.
    Nicholas CP, Marks TJ (2004) Nano Lett 4:1557. doi: https://doi.org/10.1021/nl049255r CrossRefGoogle Scholar
  7. 7.
    Wang YL, Jiang XC, Xia YN (2003) J Am Chem Soc 125:16176. doi: https://doi.org/10.1021/ja037743f CrossRefGoogle Scholar
  8. 8.
    Comini E, Faglia G, Sberveglieri G, Pan ZW, Wang ZL (2002) Appl Phys Lett 81:1869. doi: https://doi.org/10.1063/1.1504867 CrossRefGoogle Scholar
  9. 9.
    Kolmakov A, Zhang YX, Cheng GS, Moskovits M (2003) Adv Mater 15:997. doi: https://doi.org/10.1002/adma.200304889 CrossRefGoogle Scholar
  10. 10.
    Law M, Kind H, Messer B, Kim F, Yang PD (2002) Angew Chem Int Ed 41:2405. doi:10.1002/1521-3773(20020703)41:13<2405::AID-ANIE2405>3.0.CO;2-3CrossRefGoogle Scholar
  11. 11.
    Huang J, Matsunaga N, Shimanoe K, Yamazoe N, Kunitake T (2005) Chem Mater 17:3513. doi: https://doi.org/10.1021/cm047819m CrossRefGoogle Scholar
  12. 12.
    Akari S, Friemelt K, Glockler K, Luxsteiner MC, Bucher E, Dransfeld K (1993) Appl Phys A Mater Sci Process 57:221CrossRefGoogle Scholar
  13. 13.
    Tatsuyama C, Ichimura S (1976) Jpn J Appl Phys 15:843. doi: https://doi.org/10.1143/JJAP.15.843 CrossRefGoogle Scholar
  14. 14.
    Cheng Y, Xiong P, Fields L, Zheng JP, Yang RS, Wang ZL (2006) Appl Phys Lett 89:093114. doi: https://doi.org/10.1063/1.2338754 CrossRefGoogle Scholar
  15. 15.
    Yang YY, Pradhan S, Chen SW (2004) J Am Chem Soc 126:76. doi: https://doi.org/10.1021/ja037675x CrossRefGoogle Scholar
  16. 16.
    Leite ER, Weber IT, Longo E, Varela JA (2000) Adv Mater 12:965. doi:10.1002/1521-4095(200006)12:13<965::AID-ADMA965>3.0.CO;2-7CrossRefGoogle Scholar
  17. 17.
    Pang GS, Chen SG, Koltypin Y, Zaban A, Feng SH, Gedanken A (2001) Nano Lett 1:723. doi: https://doi.org/10.1021/nl0156181 CrossRefGoogle Scholar
  18. 18.
    Juttukonda V, Paddock RL, Raymond JE, Denomme D, Richardson AE, Slusher LE et al (2006) J Am Chem Soc 128:420. doi: https://doi.org/10.1021/ja056902n CrossRefGoogle Scholar
  19. 19.
    Jiang LH, Sun GQ, Zhou ZH, Sun SG, Wang Q, Yan SY et al (2005) J Phys Chem B 109:8774. doi: https://doi.org/10.1021/jp050334g CrossRefGoogle Scholar
  20. 20.
    Xu CK, Xu GD, Liu YK, Zhao XL, Wang GH (2002) Scr Mater 46:789. doi: https://doi.org/10.1016/S1359-6462(02)00077-5 CrossRefGoogle Scholar
  21. 21.
    Vayssieres L, Graetzel M (2004) Angew Chem Int Ed 43:3666. doi: https://doi.org/10.1002/anie.200454000 CrossRefGoogle Scholar
  22. 22.
    Liu YK, Zheng CL, Wang WZ, Yin CR, Wang GH (2001) Adv Mater 13:1883. doi:10.1002/1521-4095(200112)13:24<1883::AID-ADMA1883>3.0.CO;2-QCrossRefGoogle Scholar
  23. 23.
    Wang WZ, Xu CK, Wang GH, Liu YK, Zheng CL (2002) J Appl Phys 92:2740. doi: https://doi.org/10.1063/1.1497718 CrossRefGoogle Scholar
  24. 24.
    Duan JH, Yang SG, Liu HW, Gong JF, Huang HB, Zhao XN et al (2005) J Am Chem Soc 127:6180. doi: https://doi.org/10.1021/ja042748d CrossRefGoogle Scholar
  25. 25.
    Ding ZF, Quinn BM, Haram SK, Pell LE, Korgel BA, Bard AJ (2002) Science 296:1293. doi: https://doi.org/10.1126/science.1069336 CrossRefGoogle Scholar
  26. 26.
    Lou XW, Wang Y, Yuan CL, Lee JY, Archer LA (2006) Adv Mater 18:2325. doi: https://doi.org/10.1002/adma.200600733 CrossRefGoogle Scholar
  27. 27.
    Yu JG, Guo HT, Davis SA, Mann S (2006) Adv Funct Mater 16:2035. doi: https://doi.org/10.1002/adfm.200600552 CrossRefGoogle Scholar
  28. 28.
    Zhu W, Wang WZ, Xu HL, Shi JL (2006) Mater Chem Phys 99:127. doi: https://doi.org/10.1016/j.matchemphys.2005.10.002 CrossRefGoogle Scholar
  29. 29.
    Xie J, Varadan VK (2005) Mater Chem Phys 91:274. doi: https://doi.org/10.1016/j.matchemphys.2004.11.033 CrossRefGoogle Scholar
  30. 30.
    Duan XF, Lieber CM (2000) Adv Mater 12:298. doi:10.1002/(SICI)1521-4095(200002)12:4<298::AID-ADMA298>3.0.CO;2-YCrossRefGoogle Scholar
  31. 31.
    Morales AM, Lieber CM (1998) Science 279:208. doi: https://doi.org/10.1126/science.279.5348.208 CrossRefGoogle Scholar
  32. 32.
    Wang B, Yang YH, Wang CX, Xu NS, Yang GW (2005) J Appl Phys 98:124303CrossRefGoogle Scholar
  33. 33.
    Dai ZR, Gole JL, Stout JD, Wang ZL (2002) J Phys Chem B 106:1274. doi: https://doi.org/10.1021/jp013214r CrossRefGoogle Scholar
  34. 34.
    Liu Y, Dong H, Liu ML (2004) Adv Mater 16:353. doi: https://doi.org/10.1002/adma.200306104 CrossRefGoogle Scholar
  35. 35.
    Mukhamedshina DM, Beisenkhanov NB, Mit KA, Valitova IV, Botvin VA (2005) High Temp Mater Process 9:307. doi: https://doi.org/10.1615/HighTempMatProc.v9.i2.130 CrossRefGoogle Scholar
  36. 36.
    Minami T, Nanto H, Takata S (1988) Jpn J Appl Phys Part 2 Lett 27:L287CrossRefGoogle Scholar
  37. 37.
    Ye CH, Fang XS, Wang YH, Xie TW, Zhao AW, Zhang LD (2004) Chem Lett 33:54. doi: https://doi.org/10.1246/cl.2004.54 CrossRefGoogle Scholar
  38. 38.
    Han WQ, Zettl A (2003) Nano Lett 3:681. doi: https://doi.org/10.1021/nl034142d CrossRefGoogle Scholar
  39. 39.
    Zhu HL, Yang DR, Yu GX, Zhang H, Yao KH (2006) Nanotechnology 17:2386. doi: https://doi.org/10.1088/0957-4484/17/9/052 CrossRefGoogle Scholar
  40. 40.
    Reetz MT, Helbig W (1994) J Am Chem Soc 116:7401. doi: https://doi.org/10.1021/ja00095a051 CrossRefGoogle Scholar
  41. 41.
    Reetz MT, Helbig W, Quaiser SA (1995) Chem Mater 7:2227. doi: https://doi.org/10.1021/cm00060a004 CrossRefGoogle Scholar
  42. 42.
    Talapin DV, Murray CB (2005) Science 310:86. doi: https://doi.org/10.1126/science.1116703 CrossRefGoogle Scholar
  43. 43.
    Dierstein A, Natter H, Meyer F, Stephan HO, Kropf C, Hempelmann R (2001) Scr Mater 44:2209. doi: https://doi.org/10.1016/S1359-6462(01)00906-X CrossRefGoogle Scholar
  44. 44.
    Kamada K, Mukai M, Matsumoto Y (2002) Electrochim Acta 47:3309. doi: https://doi.org/10.1016/S0013-4686(02)00251-7 CrossRefGoogle Scholar
  45. 45.
    Ruan CM, Paulose M, Varghese OK, Mor GK, Grimes CA (2005) J Phys Chem B 109:15754. doi: https://doi.org/10.1021/jp052736u CrossRefGoogle Scholar
  46. 46.
    Paulose M, Shankar K, Yoriya S, Prakasam HE, Varghese OK, Mor GK et al (2006) J Phys Chem B 110:16179. doi: https://doi.org/10.1021/jp064020k CrossRefGoogle Scholar
  47. 47.
    Tsuchiya H, Macak JM, Taveira L, Balaur E, Ghicov A, Sirotna K et al (2005) Electrochem Commun 7:576. doi: https://doi.org/10.1016/j.elecom.2005.04.008 CrossRefGoogle Scholar
  48. 48.
    Yusta FJ, Hitchman ML, Shamlian SH (1997) J Mater Chem 7:1421. doi: https://doi.org/10.1039/a608525c CrossRefGoogle Scholar
  49. 49.
    Maestre D, Ramirez-Castellanos J, Hidalgo P, Cremades A, Gonzalez-Calbet JM, Piqueras J (2007) Eur J Inorg Chem 1544. doi: https://doi.org/10.1002/ejic.200600990 CrossRefGoogle Scholar
  50. 50.
    Porto SPS, Fleury PA, Damen TC (1967) Phys Rev 154:522. doi: https://doi.org/10.1103/PhysRev.154.522 CrossRefGoogle Scholar
  51. 51.
    Trayler JG, Smith HG, Nicklow RM, Wilkinson MK (1971) Phys Rev B 3:3457. doi: https://doi.org/10.1103/PhysRevB.3.3457 CrossRefGoogle Scholar
  52. 52.
    Rumyantseva MN, Gaskov AM, Rosman N, Pagnier T, Morante JR (2005) Chem Mater 17:893. doi: https://doi.org/10.1021/cm0490470 CrossRefGoogle Scholar
  53. 53.
    Sun SH, Meng GW, Zhang GX, Gao T, Geng BY, Zhang LD et al (2003) Chem Phys Lett 376:103. doi: https://doi.org/10.1016/S0009-2614(03)00965-5 CrossRefGoogle Scholar
  54. 54.
    Peercy PS, Morosin B (1973) Phys Rev B 7:2779. doi: https://doi.org/10.1103/PhysRevB.7.2779 CrossRefGoogle Scholar
  55. 55.
    Parker JC, Siegel RW (1990) Appl Phys Lett 57:943. doi: https://doi.org/10.1063/1.104274 CrossRefGoogle Scholar
  56. 56.
    Aita CR (2007) Appl Phys Lett 90:213112. doi: https://doi.org/10.1063/1.2742914 CrossRefGoogle Scholar
  57. 57.
    Abello L, Bochu B, Gaskov A, Koudryavtseva S, Lucazeau G, Roumyantseva M (1998) J Solid State Chem 135:78. doi: https://doi.org/10.1006/jssc.1997.7596 CrossRefGoogle Scholar
  58. 58.
    Dieguez A, Romano-Rodriguez A, Vila A, Morante JR (2001) J Appl Phys 90:1550. doi: https://doi.org/10.1063/1.1385573 CrossRefGoogle Scholar
  59. 59.
    Cheng B, Russell JM, Shi WS, Zhang L, Samulski ET (2004) J Am Chem Soc 126:5972. doi: https://doi.org/10.1021/ja0493244 CrossRefGoogle Scholar
  60. 60.
    Hu JQ, Bando Y, Liu QL, Golberg D (2003) Adv Funct Mater 13:493. doi: https://doi.org/10.1002/adfm.200304327 CrossRefGoogle Scholar
  61. 61.
    Jeong J, Choi SP, Chang CI, Shin DC, Park JS, Lee BT et al (2003) Solid State Commun 127:595. doi: https://doi.org/10.1016/S0038-1098(03)00614-8 CrossRefGoogle Scholar
  62. 62.
    Yu D, Wang CJ, Wehrenberg BL, Guyot-Sionnest P (2004) Phys Rev Lett 92:216802. doi: https://doi.org/10.1103/PhysRevLett.92.216802 CrossRefGoogle Scholar
  63. 63.
    Wang B, Yang YH, Wang CX, Yang GW (2005) Chem Phys Lett 407:347. doi: https://doi.org/10.1016/j.cplett.2005.03.119 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryUniversity of CaliforniaSanta CruzUSA

Personalised recommendations