Advertisement

Journal of Materials Science

, Volume 43, Issue 20, pp 6734–6746 | Cite as

Effects of environment on creep behavior of two oxide/oxide ceramic–matrix composites at 1200 °C

  • M. B. Ruggles-WrennEmail author
  • P. Koutsoukos
  • S. S. Baek
Stretching the Endurance Boundary of Composite Materials: Pushing the Performance Limit of Composite Structures

Abstract

The tensile creep behavior of two oxide/oxide ceramic–matrix composites (CMCs) was investigated at 1200 °C in laboratory air, in steam, and in argon. The composites consist of a porous oxide matrix reinforced with laminated, woven mullite/alumina (Nextel™720) fibers, have no interface between the fiber and matrix, and rely on the porous matrix for flaw tolerance. The matrix materials were alumina and aluminosilicate. The tensile stress–strain behavior was investigated and the tensile properties were measured at 1200 °C. Tensile creep behavior of both CMCs was examined for creep stresses in the 80–150 MPa range. Creep run-out defined as 100 h at creep stress was achieved in air and in argon for stress levels ≤100 MPa for both composites. The retained strength and modulus of all specimens that achieved run-out were evaluated. The presence of steam accelerated creep rates and reduced creep life of both CMCs. In the case of the composite with the aluminosilicate matrix, no-load exposure in steam at 1200 °C caused severe degradation of tensile strength. Composite microstructure, as well as damage and failure mechanisms were investigated. Poor creep performance of both composites in steam is attributed to the degradation of the fibers and densification of the matrix. Results indicate that the aluminosilicate matrix is considerably more susceptible to densification and coarsening of the porosity than the alumina matrix.

Keywords

Steam Fracture Surface Creep Rate Creep Strain Creep Curve 

References

  1. 1.
    Ohnabe H, Masaki S, Onozuka M, Miyahara K, Sasa T (1999) Composites Part A 30:489CrossRefGoogle Scholar
  2. 2.
    Zawada LP, Staehler J, Steel S (2003) J Am Ceram Soc 86(8):1282CrossRefGoogle Scholar
  3. 3.
    Parlier M, Ritti MH (2003) Aerospace Sci Technol 7:211CrossRefGoogle Scholar
  4. 4.
    Mattoni MA, Yang JY, Levi CG, Zok FW, Zawada LP (2005) Int J Appl Ceram Technol 2(2):133CrossRefGoogle Scholar
  5. 5.
    Parthasarathy TA, Zawada LP, John R, Cinibulk MK, Zelina J (2005) Int J Appl Ceram Technol 2(2):122CrossRefGoogle Scholar
  6. 6.
    Szweda A, Millard ML, Harrison MG (1997) Fiber-reinforced ceramic-matrix composite member and method for making. US Patent 5,601,674Google Scholar
  7. 7.
    Sim SM, Kerans RJ (1992) Ceram Eng Sci Proc 13(9–10):632Google Scholar
  8. 8.
    Moore EH, Mah T, Keller KA (1994) Ceram Eng Sci Proc 15(4):113CrossRefGoogle Scholar
  9. 9.
    Lange FF, Tu WC, Evans AG (1995) Mater Sci Eng A 195:145CrossRefGoogle Scholar
  10. 10.
    Mouchon E, Colomban P (1995) Composites 26:175CrossRefGoogle Scholar
  11. 11.
    Tu WC, Lange FF, Evans AG (1996) J Am Ceram Soc 79(2):417CrossRefGoogle Scholar
  12. 12.
    Evans AG, Zok FW (1994) J Mater Sci 29:3857CrossRefGoogle Scholar
  13. 13.
    Kerans RJ, Parthasarathy TA (1999) Composites Part A 30:521CrossRefGoogle Scholar
  14. 14.
    Kerans RJ, Hay RS, Parthasarathy TA, Cinibulk MK (2002) J Am Ceram Soc 85(11):2599CrossRefGoogle Scholar
  15. 15.
    Levi CG, Yang JY, Dalgleish BJ, Zok FW, Evans AG (1998) J Am Ceram Soc 81:2077CrossRefGoogle Scholar
  16. 16.
    Hegedus AG (1991) Ceramic bodies of controlled porosity and process for making same. U.S. Patent 5,0177,522Google Scholar
  17. 17.
    Lu TJ (1996) J Am Ceram Soc 79:266CrossRefGoogle Scholar
  18. 18.
    Zok FW, Levi CG (2001) Adv Eng Mater 3(1–2):15CrossRefGoogle Scholar
  19. 19.
    Zok FW (2006) J Am Ceram Soc 89(11):3309CrossRefGoogle Scholar
  20. 20.
    Lee SS, Zawada LP, Staehler J, Folsom CA (1998) J Am Ceram Soc 81(7):1797CrossRefGoogle Scholar
  21. 21.
    Zawada LP, Hay RS, Lee SS, Staehler J (2003) J Am Ceram Soc 86(6):981CrossRefGoogle Scholar
  22. 22.
    Ruggles-Wrenn MB, Mall S, Eber CA, Harlan LB (2006) Composites Part A 37(11):2029CrossRefGoogle Scholar
  23. 23.
    Jurf RA, Butner SC (1999) Trans ASME J Eng Gas Turbines Power 122(2):202CrossRefGoogle Scholar
  24. 24.
    Staehler JM, Zawada LM (2000) J Am Ceram Soc 83(7):1727CrossRefGoogle Scholar
  25. 25.
    Szymczak N (2007) MS Thesis. Air Force Institute of Technology, WPAFB, OHGoogle Scholar
  26. 26.
    Charles RJ, Hillig WB (1962) In: Symposium on mechanical strength of glass and ways of improving it. Union Scientifique Continentale du Verre, Belgium, p 511Google Scholar
  27. 27.
    Charles RJ, Hillig WB (1965) In: Zackey VF (ed) High-strength materials. Wiley, New York, p 682Google Scholar
  28. 28.
    Wiederhorn SM (1967) J Am Ceram Soc 50(8):407CrossRefGoogle Scholar
  29. 29.
    Wiederhorn SM, Bolz LH (1970) J Am Ceram Soc 53(10):543CrossRefGoogle Scholar
  30. 30.
    Wiederhorn S (1972) J Am Ceram Soc 55(2):81CrossRefGoogle Scholar
  31. 31.
    Wiederhorn SM, Freiman SW, Fuller ER, Simmons CJ (1982) J Mater Sci 17:3460CrossRefGoogle Scholar
  32. 32.
    Michalske TA, Freiman SW (1983) J Am Ceram Soc 66(4):284CrossRefGoogle Scholar
  33. 33.
    Michalske TA, Bunker BC (1984) J Appl Phys 56(10):2686CrossRefGoogle Scholar
  34. 34.
    Michalske TA, Bunker BC (1993) J Am Ceram Soc 76(10):2613CrossRefGoogle Scholar
  35. 35.
    Evans AG, Fuller ER (1974) Metall Trans A 5(1):27Google Scholar
  36. 36.
    Ruggles-Wrenn MB, Hetrick G, Baek SS (2007) Int J Fatigue, in pressGoogle Scholar
  37. 37.
    Antti ML, Lara-Curzio E, Warren R (2004) J Eur Ceram Soc 24:565CrossRefGoogle Scholar
  38. 38.
    Fujita H, Jefferson G, McMeeking RM, Zok FW (2004) J Am Ceram Soc 87(2):261CrossRefGoogle Scholar
  39. 39.
    Fujita H, Levi CG, Zok FW, Jefferson G (2005) J Am Ceram Soc 88(2):367CrossRefGoogle Scholar
  40. 40.
    Sherer GW (1998) J Am Ceram Soc 81(1):49CrossRefGoogle Scholar
  41. 41.
    Bordia RK, Jagota A (1993) J Am Ceram Soc 76(10):2475CrossRefGoogle Scholar

Copyright information

© US Government 2008

Authors and Affiliations

  • M. B. Ruggles-Wrenn
    • 1
    Email author
  • P. Koutsoukos
    • 1
  • S. S. Baek
    • 2
  1. 1.Department of Aeronautics and AstronauticsAir Force Institute of TechnologyWright-Patterson Air Force BaseUSA
  2. 2.Agency for Defense DevelopmentDaejeonSouth Korea

Personalised recommendations