Journal of Materials Science

, Volume 43, Issue 15, pp 5350–5357 | Cite as

Influence of heat treatment on creep of a Mn–N stabilised austenitic stainless steel

  • A. Wisniewski
  • J. BeddoesEmail author


Creep at 700 °C/196 MPa and 900 or 925 °C/27.4 MPa of 21Cr–4Ni–9Mn austenitic stainless steel is determined as a function of the heat treatment. The heat treatment variation involves altering the solution heat treatment cooling rate from water quenching to cooling at 6 or 4 °C/min causing: serrated grain boundaries versus planar grain boundaries, coarser intergranular carbides, and discontinuous precipitation of grain boundary reaction zones. Water quenching causes improved creep resistance. Creep fracture and cracking is intergranular. Coarse intergranular carbides and grain boundary reaction zones cause premature void formation and cracking, this damage leading to an accelerating creep rate and lowering creep resistance of the more slowly cooled conditions. During creep, grain boundary serrations, which may otherwise contribute to improved creep, are eliminated. Determining the individual influence of grain boundary serrations on creep requires a detailed investigation of various heat treatment parameters to prevent concurrent formation of grain boundary reaction zones and serrations.


Austenitic Stainless Steel Creep Property Solution Heat Treatment Intergranular Crack Rupture Life 



This research was funded by the Natural Sciences and Engineering Research Council of Canada through the Discovery grant program. Thanks are due to Crucible Specialty Metals, Syracuse, New York,for supply of the 21-4N bars.


  1. 1.
    Beddoes GN (1992) Ironmak Steelmaking 19:290Google Scholar
  2. 2.
    Lula RA (1986) Manganese in stainless steels. The Manganese Centre, ParisGoogle Scholar
  3. 3.
    Koul AK, Immarigeon JP, Wallace W (1994) In: Koul AK, Parameswaran VR, Immarigeon JP, Wallace W (eds) Advances in high temperature structural materials and protective coatings. National Research Council Canada, OttawaGoogle Scholar
  4. 4.
    Beddoes J, Wallace W (1980) Metallography 13:185. doi: CrossRefGoogle Scholar
  5. 5.
    Larson JM, Floreen S (1977) Metall Trans 8A:51CrossRefGoogle Scholar
  6. 6.
    Tanaka M (1993) Z Metallk 84:51Google Scholar
  7. 7.
    Tanaka M, Iizuka H, Tagami M (1989) J Math Sci 24:2421. doi: CrossRefGoogle Scholar
  8. 8.
    Tanaka M, Iizuka H, Ashihara F (1992) J Math Sci 27:2636. doi: CrossRefGoogle Scholar
  9. 9.
    Hong HU, Nam SW (2003) J Math Sci 38:1535. doi: CrossRefGoogle Scholar
  10. 10.
    Tanaka M, Miyagawa O, Sakaki T et al (1988) J Math Sci 23:621. doi: CrossRefGoogle Scholar
  11. 11.
    Tanaka M, Iizuka H, Ashihara F (1987) Trans ISIJ 28:129CrossRefGoogle Scholar
  12. 12.
    Koul AK, Thamburaj R (1995) Metall Trans 16A:17Google Scholar
  13. 13.
    Wu XJ, Koul AK (1997) Adv Perform Mater 4:409. doi: CrossRefGoogle Scholar
  14. 14.
    Koul AK, Gessinger GH (1983) Acta Metall 31:1061. doi: CrossRefGoogle Scholar
  15. 15.
    Larson JM (1976) Metall Trans 7A:1497CrossRefGoogle Scholar
  16. 16.
    Letellier L, Guttmann M, Blavette D (1994) Philos Magn Lett 70:189. doi: CrossRefGoogle Scholar
  17. 17.
    Henry MF, Yoo YS, Yoon DY et al (1993) Metall Trans 24A:1733CrossRefGoogle Scholar
  18. 18.
    Danflou HL, Marty M, Walder A (1992) Proceedings of the 7th International Symposium Superalloys 63Google Scholar
  19. 19.
    Hyun UH, Nam SW (2001) Z Metallkunde 92:1331Google Scholar
  20. 20.
    Kim KJ, Ginsztler J, Nam SW (2005) Mater Lett 59:1439. doi: CrossRefGoogle Scholar
  21. 21.
    Iizuka H, Tanaka M (1986) J Math Sci 21:2803. doi: CrossRefGoogle Scholar
  22. 22.
    Iizuka H, Tanaka M, Ashihara F (1991) J Eng Mat Tech 113:9. doi: CrossRefGoogle Scholar
  23. 23.
    Iizuka H, Tanaka M, Miyagawa O et al (1096) Trans Jpn Inst Met 27:851Google Scholar
  24. 24.
    Iizuka H, Tanaka M (1989) Trans Jpn Soc Mech Eng Part A 55:1469CrossRefGoogle Scholar
  25. 25.
    Iizuka H, Tanaka M, Ashihara F (1988) Trans Jpn Soc Mech Engineers Part A 54:1317CrossRefGoogle Scholar
  26. 26.
    Larson JM, Floreen S (1977) Metall Trans 8A:51CrossRefGoogle Scholar
  27. 27.
    Tanaka M, Miyagawa O, Fujishiro D (1977) J Jpn Inst Met 41:11CrossRefGoogle Scholar
  28. 28.
    Knutsen RD, Lang CI, Basson JA (2004) Acta Math 52:2407. doi: CrossRefGoogle Scholar
  29. 29.
    Tanaka M, Miyagawa O, Sakaki T et al (1979) J ISIJ 65:939Google Scholar
  30. 30.
    Yoshiba M, Miyagawa O (1985) Trans ISIJ 26:69CrossRefGoogle Scholar
  31. 31.
    Chang M, Koul AK, Au P et al (1994) J Mat Eng Perf 3:356. doi: CrossRefGoogle Scholar
  32. 32.
    Tanaka M, Iizuka H, Tagami M (1989) J Math Sci 24:1623. doi: CrossRefGoogle Scholar
  33. 33.
    Tanaka M, Iizuka H (1990) z Metallkunde 81:149Google Scholar
  34. 34.
    Kim KJ, Hong UH, Min KS et al (2004) Mater Sci Eng A 387–389:531. doi: CrossRefGoogle Scholar
  35. 35.
    Kim KJ, Hong UH, Min KS et al (2004) Acta Metab Sin 17:632Google Scholar
  36. 36.
    Tanaka M, Iizuka H, Ashihara F (1988) J Math Sci 23:3827. doi: CrossRefGoogle Scholar
  37. 37.
    Wisniewski A, Beddoes J (2008) Mater Sci Eng A (in press)Google Scholar
  38. 38.
    Sourmail T (2001) Mat Sci Tech 17:1CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Mechanical & Aerospace EngineeringCarleton UniversityOttawaCanada

Personalised recommendations