Advertisement

Journal of Materials Science

, Volume 43, Issue 15, pp 5376–5384 | Cite as

Reaction study of various mixtures of tetra ethyl ortho silicate and aluminum nitrate

  • Akshoy Kr. ChakrabortyEmail author
Article

Abstract

Several studies on the formation of amorphous aluminosilicate phase during heating slow hydrolysis (SH) or Type 1 mullite gel prior to formation of 2:1 mullite is briefly reviewed. Tetra ethyl ortho silicate (TEOS) and aluminum nitrate nonahydrate (ANN) are isothermally heated on water bath at 80 °C. It has been shown that these react in an exothermic manner. The resultant isothermally heated gel (ISG) removes organics, moisture on heating and forms alumino silicate (A) precursor phase. Among the various mixtures of the two components, the batch composition corresponds to Al/Si ratio of 3/1 generates highest evolution of heat which suggests that precursor analogous to the composition of 3:2 mullite is most stable. Slow hydrolysis gels of different Al2O3:SiO2 ratios synthesized out of similar sources exhibit 980 °C exotherm on DTA analysis which is a function of Al2O3 content. The highest exotherm is observed for the gel/precursor analogous to the same composition of the batch synthesized above by isothermal condition. Corroborating heat evolution behavior of ISG gels with DTA analysis of SH gels, it is suggested that the various compositions of intermediate aluminosilicate (A) phase may form. The composition corresponds to 3:2 mullite may be most stable.

Keywords

Aluminosilicate Batch Composition Aluminum Nitrate Nonahydrate Aluminum Nitrate Solution Ethyl Ortho Silicate 

Notes

Acknowledgements

The author thanks Dr. H. S. Maity, Director of the Institute for his kind permission to publish the paper. Thanks to Mr. Pranab Kr. Nandi for his assistance.

References

  1. 1.
  2. 2.
    Yamada H, Kimura S (1972) Yogo Kyokai Shi 70:63Google Scholar
  3. 3.
    Hirata Y, Sakeda K, Matsushita Y, Shimada K, Ishihara Y (1989) J Am Ceram Soc 72:995CrossRefGoogle Scholar
  4. 4.
    Schneider H, Merwin L, Sebald A (1992) J Mater Sci 27:812. doi: https://doi.org/10.1007/BF02403900 CrossRefGoogle Scholar
  5. 5.
    Schneider H, Saruhan B, Voll D, Merwin L, Sebald A (1993) J Euro Ceram Soc 11:87CrossRefGoogle Scholar
  6. 6.
    Yoldas BE (1992) J Mater Sci 27:6667. doi: https://doi.org/10.1007/BF01165952 CrossRefGoogle Scholar
  7. 7.
    Jaymes I, Douy A, Massiot D, Coutures JP (1996) J Mater Sci 31:4581. doi: https://doi.org/10.1007/BF00366355 CrossRefGoogle Scholar
  8. 8.
    Huang YX, Senos AMR, Rocha J, Baptista JL (1997) 105 32:105. doi: https://doi.org/10.1023/A:1018575115770 Google Scholar
  9. 9.
    Irwin AD, Holmgren JS, Jonas J (1987) Mater Lett 6:25. doi: https://doi.org/10.1016/0167-577X(87)90095-4 CrossRefGoogle Scholar
  10. 10.
    Irwin AD, Holmgren JS, Jonas J (1988) J Mater Sci 23:2908. doi: https://doi.org/10.1007/BF00547467 CrossRefGoogle Scholar
  11. 11.
    Yasumori A, Iwasaki M, Kawazoe H, Yamane M, Nakamura Y (1990) Phys Chem Glasses 31:1Google Scholar
  12. 12.
    Leonard AJ, Ratnasamy P, Declerk FD, Fripiat JJ (1971) Disc Faraday Soc 52:98CrossRefGoogle Scholar
  13. 13.
    Schneider H, Voll D, Saruhan B, Sanz J, Schrader G, Ruscher C, Mosset A (1994) J Non-Crystal Solids 178:262CrossRefGoogle Scholar
  14. 14.
    Leonard A, Suzuki S, Fripiat JJ, De Kimpe C (1964) J Physical Chem 68:2608CrossRefGoogle Scholar
  15. 15.
    Colomban Ph (1989) J Mater Sci 24:3011CrossRefGoogle Scholar
  16. 16.
    Kamijo N, Umesaki N, Fukui K, Guy C, Tadanaga K, Tatsumisago M, Minami T (1994) J Non-Crist Solids 177:187CrossRefGoogle Scholar
  17. 17.
    Okuno M, Shimada Y, Schmucker M, Schneider H, Hoffbauer W, Jansen M (1997) J Nom-Crystal Solids 210:41CrossRefGoogle Scholar
  18. 18.
    Morikawa H, Miwa S, Miyake M, Marumo F, Sata T (1982) J Am Ceram Soc 65:78CrossRefGoogle Scholar
  19. 19.
    Okada K, Otsuka N (1986) J Am Ceram Soc 69:652CrossRefGoogle Scholar
  20. 20.
    Chakraborty AK (2003) J Therm Anal Calorimy 71:799CrossRefGoogle Scholar
  21. 21.
    Keefer KW (1984) In: Brinker CJ, Clark DF, Ulrich DR (eds) Better ceramics through chemistry, vol 32, North-Holland, NY, p 15Google Scholar
  22. 22.
    Chakraborty AK (2004) Brit Ceram Trans 103:33CrossRefGoogle Scholar
  23. 23.
    Sacks MD, Lee HW, Pask JA (1990) In: Somiya S, Davis RF, Pask JK (eds) Ceramic transactions, vol 6, Mullite and mullite matrix composites. American Ceramic Society, Westerville, OHGoogle Scholar
  24. 24.
    Jaymes I, Douy A, Massiot D, Busnel JP (1995) J Am Ceram Soc 78:2648CrossRefGoogle Scholar
  25. 25.
    Schmuecker M, Schneider H (2005) Mullite-type gels and glasses. In: Schneider, Komarneni S (eds) Mullite. Wiley-VCH, Weinheim, Germany, pp 93–128Google Scholar
  26. 26.
    Chakraborty AK (2005) J Am Ceram Soc 88:2424CrossRefGoogle Scholar
  27. 27.
    Fukuoka M, Onoda Y, Inoue S, Wada K, Nukui A, Makishima A (1993) J Sol-Gel Sci Tech 1:47CrossRefGoogle Scholar
  28. 28.
    Li DX, Thomson WJ (1990) J Am Ceram Soc 73:964CrossRefGoogle Scholar
  29. 29.
    Hoffman DW, Roy R, Komarneni S (1984) J Am Ceram Soc 67:468CrossRefGoogle Scholar
  30. 30.
    Li DX, Thomson WJ (1991) J Am Ceram Soc 74:574CrossRefGoogle Scholar
  31. 31.
    Horte CH, Wiegmann J (1956) Naturwiss 43:9CrossRefGoogle Scholar
  32. 32.
    Demediuk T, Cole WF (1958) Nature 181:1400CrossRefGoogle Scholar
  33. 33.
    Taylor A, Holland D (1993) J Non-Cryst Solids 152:1CrossRefGoogle Scholar
  34. 34.
    Sales M, Alarcon J (1996) J Euro Ceram Soc 16:781CrossRefGoogle Scholar
  35. 35.
    Douy A (2006) J Euro Ceram Soc 26:1447CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.RefractoriesCentral Glass and Ceramic Research InstituteKolkataIndia

Personalised recommendations