Journal of Materials Science

, Volume 43, Issue 15, pp 5336–5341 | Cite as

Hydrogen sorption characteristics of the composites 90 wt.% Mg (MgH2)–10 wt.% V0.855Ti0.095Fe0.05

  • Eli Grigorova
  • Mitko Khristov
  • Maria Khrussanova
  • Pavel Peshev


The hydrogen absorption–desorption characteristics of composites containing 90 wt.% Mg or MgH2 and 10 wt.% of the intermetallic compound V0.855Ti0.095Fe0.05 obtained by mechanical alloying for 1 and 5 h in an inert medium were investigated. Absorption measurements were performed under a hydrogen pressure P = 1 MPa at temperatures of 623, 573, 523, and 473 K. Dehydriding was studied at 623 and 573 K and a pressure of 0.15 MPa. It was established that the presence of the additive improved significantly the hydriding kinetics of magnesium while the effect of the duration of mechanical alloying was less pronounced. Due to the small difference in specific surface areas and crystallite sizes, both composites investigated showed no substantial difference in behavior during absorption and desorption of hydrogen. The best absorption–desorption properties were found with the composite 90 wt.% Mg–10 wt.% V0.855Ti0.095Fe0.05 mechanically activated for 5 h.


Crystallite Size Mechanical Alloy Hydrogen Storage Absorption Capacity MgH2 



The financial support of the National Fund of Scientific Investigations of Bulgaria under contract No X-1407/2004 is highly appreciated.


  1. 1.
    Ivanov EY, Konstanchuk IG, Stepanov AA, Boldyrev VV (1986) Dokl Akad Nauk SSSR 286:385Google Scholar
  2. 2.
    Konstanchuk IG, Ivanov EY, Pezat M, Darriet B, Hagenmuller P (1987) J Less-Common Met 131:181CrossRefGoogle Scholar
  3. 3.
    Bobet J-L, Pechev S, Chevalier B, Darriet B (1999) J Mater Chem 9:315CrossRefGoogle Scholar
  4. 4.
    Khrussanova M, Grigorova E, Mitov I, Radev D, Peshev P (2001) J Alloys Compd 327:230CrossRefGoogle Scholar
  5. 5.
    Bobet J-L, Akiba E, Darriet B (2001) Int J Hydrogen Energy 26:493CrossRefGoogle Scholar
  6. 6.
    Gennari FC, Castro FJ, Urretavizcaya G, Meyer G (2002) J Alloys Compd 334:277CrossRefGoogle Scholar
  7. 7.
    Bououdina M, Guo ZX (2002) J Alloys Compd 335:222CrossRefGoogle Scholar
  8. 8.
    Song MY (2003) Int J Hydrogen Energy 28:403CrossRefGoogle Scholar
  9. 9.
    Liang G, Schulz R (2004) J Mater Sci 39:1557. doi: CrossRefGoogle Scholar
  10. 10.
    De Castro JFR, Santos SF, Costa ALM, Yavari AR, Botta WJF, Ishikawa TT (2004) J Alloys Compd 376:251CrossRefGoogle Scholar
  11. 11.
    Belouis LEA, Honnor P, Hall PJ, Morris S, Dodd SB (2006) J Mater Sci 41:6403. doi: CrossRefGoogle Scholar
  12. 12.
    Czujko T, Varin RA, Chiu Ch Wronski Z (2006) J Alloys Compd 414:240CrossRefGoogle Scholar
  13. 13.
    Hashimoto H, Sun ZM (2006) J Alloys Compd 417:203CrossRefGoogle Scholar
  14. 14.
    Khrussanova M, Terzieva M, Peshev P, Konstanchuk IG, Ivanov EY (1989) Z Phys Chem (NF) 164:1261CrossRefGoogle Scholar
  15. 15.
    Khrussanova M, Terzieva M, Peshev P, Konstanchuk I, Ivanov E (1991) Mater Res Bull 26:561CrossRefGoogle Scholar
  16. 16.
    Wang P, Wang AM, Zhang HF, Ding BZ, Hu ZQ (2000) J Alloys Compd 313:218CrossRefGoogle Scholar
  17. 17.
    Song MY, Bobet J-L, Darriet B (2003) J Alloys Compd 340:256CrossRefGoogle Scholar
  18. 18.
    Bobet J-L, Desmoulins-Krawiec S, Grigorova E, Cansell F, Chevalier B (2003) J Alloys Compd 351:217CrossRefGoogle Scholar
  19. 19.
    Castro FJ, Bobet J-L (2004) J Alloys Compd 366:303CrossRefGoogle Scholar
  20. 20.
    Song MY, Kwon IH, Bae J-S (2005) Int J Hydrogen Energy 30:1107CrossRefGoogle Scholar
  21. 21.
    Huang ZG, Guo ZP, Calka A, Wexler D, Lukey C, Liu HK (2006) J Alloys Compd 422:299CrossRefGoogle Scholar
  22. 22.
    Vijay R, Sundaresan R, Maiya MP, Srinivasa Murthy S (2006) J Alloys Compd 424:289CrossRefGoogle Scholar
  23. 23.
    Dolci F, Di Chio M, Baricco M (2007) J Mater Sci 42:7180. doi: CrossRefGoogle Scholar
  24. 24.
    Terzieva M, Khrussanova M, Peshev P, Radev D (1995) Int J Hydrogen Energy 20:53CrossRefGoogle Scholar
  25. 25.
    Guoxian L, Erde W, Shoushi F (1995) J Alloys Compd 223:111CrossRefGoogle Scholar
  26. 26.
    Terzieva M, Khrussanova M, Peshev P (1998) J Alloys Compd 267:235CrossRefGoogle Scholar
  27. 27.
    Liang G, Boily S, Huot J, Van Neste A, Schulz R (1998) J Alloys Compd 268:302CrossRefGoogle Scholar
  28. 28.
    Sai Raman SS, Davidson DJ, Srivastava ON (1999) J Alloys Compd 292:202CrossRefGoogle Scholar
  29. 29.
    Yang J, Ciureanu M, Roberge R (2000) Mater Lett 43:234CrossRefGoogle Scholar
  30. 30.
    Wang P, Zhang HF, Ding BZ, Hu ZQ (2001) Acta Mater 49:921CrossRefGoogle Scholar
  31. 31.
    Wang P, Wang AM, Ding BZ, Hu ZQ (2002) J Alloys Compd 334:243CrossRefGoogle Scholar
  32. 32.
    Bobet J-L, Grigorova E, Khrussanova M, Khristov M, Radev D, Peshev P (2002) J Alloys Compd 345:280CrossRefGoogle Scholar
  33. 33.
    Hu YQ, Zhang HF, Wang AM, Ding BZ, Hu ZQ (2003) J Alloys Compd 354:296CrossRefGoogle Scholar
  34. 34.
    Khrussanova M, Grigorova E, Bobet J-L, Khristov M, Peshev P (2004) J Alloys Compd 365:308CrossRefGoogle Scholar
  35. 35.
    Hu YQ, Yan C, Zhang HF, Ye L, Hu ZQ (2004) J Alloys Compd 375:265CrossRefGoogle Scholar
  36. 36.
    Kondo T, Shindo K, Arakawa M, Sakurai Y (2004) J Alloys Compd 375:283CrossRefGoogle Scholar
  37. 37.
    Vijay R, Sundaresan R, Maiya MP, Srivansa Murthy S, Fu Y, Klein H-P, Groll M (2004) J Alloys Compd 384:283CrossRefGoogle Scholar
  38. 38.
    Gu H, Zhu Y, Li L (2006) J Alloys Compd 424:382CrossRefGoogle Scholar
  39. 39.
    Khrussanova M, Mandzhukova TS, Grigorova E, Khristov M, Peshev P (2007) J Mater Sci 42:3338. doi: CrossRefGoogle Scholar
  40. 40.
    Liu X, Huang Z, Jiang L, Wang S (2007) Int J Hydrogen Energy 32:965CrossRefGoogle Scholar
  41. 41.
    Ivanov E, Konstanchuk I, Bokhonov B, Boldyrev V (2003) J Alloys Compd 359:320CrossRefGoogle Scholar
  42. 42.
    Bouaricha S, Dodelet JP, Guay D, Huot J, Schulz R (2001) J Alloys Compd 325:245CrossRefGoogle Scholar
  43. 43.
    Imamura H, Tabata S, Shigetomi N, Takesue Y, Sakata Y (2002) J Alloys Compd 330–332:579CrossRefGoogle Scholar
  44. 44.
    Imamura H, Kusuhara M, Minami S, Matsumoto M, Masanari K, Sakata Y, Itoh K, Fukunaga T (2003) Acta Mater 51:6407CrossRefGoogle Scholar
  45. 45.
    Bobet J-L, Grigorova E, Khrussanova M, Khristov M, Stefanov P, Peshev P, Radev D (2004) J Alloys Compd 366:298CrossRefGoogle Scholar
  46. 46.
    Liang G, Huot J, Boily S, Van Neste A, Schulz R (1999) J Alloys Compd 291:295CrossRefGoogle Scholar
  47. 47.
    Huot J, Liang G, Schulz R (2001) Appl Phys A 72:187CrossRefGoogle Scholar
  48. 48.
    Dornheim M, Eigen N, Barkhordarian G, Klassen T, Bormann R (2006) Adv Eng Mater 8:377CrossRefGoogle Scholar
  49. 49.
    Dornheim M, Doppiu S, Barkhordarian G, Boesenberg U, Klassen T, Gutfleisch O, Bormann R (2007) Scripta Mater 56:841CrossRefGoogle Scholar
  50. 50.
    Khrussanova M, Peshev P, Darriet B, Petrova S (1992) Mater Res Bull 27:611CrossRefGoogle Scholar
  51. 51.
    Tanguy B, Soubeyroux J-L, Pezat M, Portier J, Hagenmuller P (1976) Mater Res Bull 11:1441CrossRefGoogle Scholar
  52. 52.
    Topas V3, General profile and structure analysis software for powder diffraction data, Brucker AXS, Karlsruhe, Germany (2006)Google Scholar
  53. 53.
    Grigorova E, Khristov M, Khrussanova M, Bobet JL, Peshev P (2005) Int J Hydrogen Energy 30:1099CrossRefGoogle Scholar
  54. 54.
    Khrussanova M, Grigorova E, Mandzhukova TS, Khristov M, Bobet JL, Peshev P (2007) Bulgarian Chem Commun 39:123Google Scholar
  55. 55.
    Liu D, Zhu Y, Li L (2007) J Mater Sci 42:9725. doi: CrossRefGoogle Scholar
  56. 56.
    Zaluska A, Zaluski L, Ström-Olsen JO (1999) J Alloys Compd 288:217CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Eli Grigorova
    • 1
  • Mitko Khristov
    • 1
  • Maria Khrussanova
    • 1
  • Pavel Peshev
    • 1
  1. 1.Institute of General and Inorganic ChemistryBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations