Advertisement

Journal of Materials Science

, Volume 43, Issue 23–24, pp 7257–7263 | Cite as

Production, properties and application prospects of bulk nanostructured materials

  • R. R. Mulyukov
  • R. M. Imayev
  • A. A. NazarovEmail author
Ultrafine-Grained Materials

Abstract

Fundamental mechanisms of grain refinement during equal-channel angular pressing (ECAP) and multiple isothermal forging (MIF) are analyzed and compared. Based on this analysis, deformation methods of nanostructuring are classified into severe plastic deformation and mild plastic deformation methods. It is demonstrated that MIF is a versatile method allowing for a production of bulk and sheet nanostructured semi-products with grain size down to 50 nm and applicable to various metals and alloys. Novel mechanical properties of bulk nanostructured materials produced by this method are presented. The ways of their structural and functional applications are discussed.

Keywords

Dynamic Recrystallization Severe Plastic Deformation Deformation Method Severe Plastic Deformation Method Deformation Treatment 

Abbreviations

SPD

Severe plastic deformation

ECAP

Equal-channel angular pressing

MIF

Multiple isothermal forging

References

  1. 1.
    Altan BS (ed) (2006) Severe plastic deformation: toward bulk production of nanostructured materials. Nova Science, New YorkGoogle Scholar
  2. 2.
    Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103CrossRefGoogle Scholar
  3. 3.
    Valiev RZ, Langdon TG (2006) Progr Mater Sci 51:881CrossRefGoogle Scholar
  4. 4.
    Valiakhmetov OR, Galeev RM, Salishchev GA (1990) Phys Met Metallogr 72:204Google Scholar
  5. 5.
    Imayev RM, Imayev VM (1991) Scr Metall Mater 25:2041CrossRefGoogle Scholar
  6. 6.
    Salishchev GA, Valiakhmetov OR, Galeev RM (1993) J Mater Sci 28:2898. doi: https://doi.org/10.1007/BF00354692 CrossRefGoogle Scholar
  7. 7.
    Imayev RM, Imayev VM, Salishchev GA (1992) J Mater Sci 27:4465. doi: https://doi.org/10.1007/BF00541580 CrossRefGoogle Scholar
  8. 8.
    Rybin VV (1986) Large plastic strains and fracture of metals. Metallurgiya Publishers, Moscow (in Russian)Google Scholar
  9. 9.
    Hansen N, Jensen DJ (1999) Philos Trans R Soc Lond A 357:1447CrossRefGoogle Scholar
  10. 10.
    Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1998) Acta Mater 46:3317CrossRefGoogle Scholar
  11. 11.
    Gholinia A, Prangnell PB, Markushev MV (2000) Acta Mater 48:1115CrossRefGoogle Scholar
  12. 12.
    Driver JH (2004) Scr Mater 51:819CrossRefGoogle Scholar
  13. 13.
    Huang WH, Yu CY, Kao PW, Chang CP (2004) Mater Sci Eng A 366:221CrossRefGoogle Scholar
  14. 14.
    Kaibyshev OA (1992) Superplasticity of alloys, intermetallics and ceramics. Springer-Verlag, BerlinCrossRefGoogle Scholar
  15. 15.
    Zherebtsov SV, Salishchev GA, Galeyev RM, Valiakhmetov OR, Mironov SY, Semiatin SL (2004) Scr Mater 51:1147CrossRefGoogle Scholar
  16. 16.
    Poirier JP (1976) Plasticité à haute temperature des solids cristallins. Eyrolles, ParisGoogle Scholar
  17. 17.
    Galeev RM, Valiakhmetov OR, Salishchev GA (1990) Russian Metall 4:97Google Scholar
  18. 18.
    Salishchev G, Zaripova R, Galeev R, Valiakhmetov O (1995) NanoStr Mater 6:913CrossRefGoogle Scholar
  19. 19.
    Salishchev GA, Valiakhmetov OR, Galeev RM, Malysheva SP (1996) Russian Metall 4:86Google Scholar
  20. 20.
    Zherebtsov SV, Galeev RM, Salishchev GA, Myshlaev MM (1999) Phys Met Metallogr 87(4):66Google Scholar
  21. 21.
    Valitov VA, Salishchev GA, Mukhtarov ShKh (1994) Russian Metall 3:127Google Scholar
  22. 22.
    Valitov VA, Kaibyshev OA, Mukhtarov ShKh, Gajnutdinova NR (2001) In: Gottstein G, Molodov DA (eds) Recrystallization and grain growth, vol 1. Springer-Verlag, Berlin, p 563Google Scholar
  23. 23.
    Valitov VA, Mukhtarov ShKh, YuA Raskulova (2004) Phys Metals Metallogr 102(1):97CrossRefGoogle Scholar
  24. 24.
    Imayev R, Shagiev M, Salishchev G, Imayev V, Valitov V (1996) Scripta Mater 34:985CrossRefGoogle Scholar
  25. 25.
    Zherebtsov SV, Salishchev GA, Galeyev RM, Valiakhmetov OR, Mironov SY, Chen TF (2004) Scripta Mater 51:1147CrossRefGoogle Scholar
  26. 26.
    Valiev RZ, Alexandrov IV (2007) Bulk nanostructured materials. Academkniga, MoscowGoogle Scholar
  27. 27.
    Salishchev GA, Galeev RM, Malysheva SP, Valiakhmetov OR (1997) Mater Sci Forum 243–245:585Google Scholar
  28. 28.
    Salishchev GA, Valiakhmetov OR, Galeyev RM, Froes FH (2004) In: Lutjering G, Albrecht O (eds) Ti-2003, science and technology, vol 2. Wiley-VCH Verlag, Weinheim, p 569Google Scholar
  29. 29.
    Lutfullin RR, Kaibyshev OA, Valiakhmetov OP, Mukhametrakhimov MKh, Safiullin RV, Mulyukov RR (2003) J Adv Mater 4:21 (in Russian)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • R. R. Mulyukov
    • 1
  • R. M. Imayev
    • 1
  • A. A. Nazarov
    • 1
    Email author
  1. 1.Institute for Metals Superplasticity ProblemsRussian Academy of SciencesUfaRussia

Personalised recommendations