Advertisement

Journal of Materials Science

, Volume 43, Issue 15, pp 5313–5324 | Cite as

Si-incorporated alumina phases formed out of diphasic mullite gels

  • A. K. ChakrabortyEmail author
Article

Abstract

The diphasic mullite gel forms o-mullite on heating via intermediate spinel phase. Characterization of the latter phase with various physico-chemical techniques is concisely reviewed. It is noticeable that XRD intensity of both the amorphous scattering band and the diffraction peak of Al–Si spinel phase changes during each step of transformation processes of diphasic gel. Accordingly, the integrated area of the intensity peak of amorphous band and that of Al–Si spinel phase generated during heating diphasic gels were measured by XRD technique with the help of X’Pert Graphics and Profit softwares. The amount of free SiO2 (A) content present at various stages of heating diphasic gels was estimated by classical alkali leaching study standardized earlier. The results show that diphasic gel which forms an aluminosilicate (A) phase initially by dehydration and dehydroxylation, subsequently crystallizes to Al–Si spinel phase. In consequence, the ratio of XRD peak of spinal phase to that of amorphous band increases in the temperature range of 600–1000 °C. This study confirms the earlier view of incorporation of silica into the alumina structure with formation of Al–Si spinal phase. Complementary alkali leaching study indicates the existence of non-crystalline silica-rich aluminous phase other than free non-crystalline silica during heating diphasic gel at ~1000 °C.

Keywords

Aluminosilicate Boehmite Spinel Phase Free Silica Aluminum Nitrate Nonahydrate 

Notes

Acknowledgement

The author thanks the Director, Dr. H.S. Maity for his kind permission to publish this paper and also thanks Mr. P. Nandy for the graphic and art work.

References

  1. 1.
    Schmuecker M, Schneider H (2005) In: Schneider H, Komarneni S (eds) Mullite. Wiley-VCH, Weinheim, Germany, pp 167–189Google Scholar
  2. 2.
    Okada K, Otsuka N (1986) J Am Ceram Soc 69:652CrossRefGoogle Scholar
  3. 3.
    Chakraborty AK (1978) J Am Ceram Soc 61:170CrossRefGoogle Scholar
  4. 4.
    Chakraborty AK (1979) J Am Ceram Soc 62:120CrossRefGoogle Scholar
  5. 5.
    Low M, McPherson R (1989) J Mater Sci 24:926CrossRefGoogle Scholar
  6. 6.
    Chakraborty AK, Ghosh DK (1986) J Am Ceram Soc 69:C-202Google Scholar
  7. 7.
    Suzuki H, Saito H, Tomokiyo Y, Suyama Y (1990) In: Somya S, Davas RF, Pask JA (eds) Ceramic transactions, vol 8. American Ceramic Society, Westerville, OH, p 263Google Scholar
  8. 8.
    Chakraborty AK, Ghosh DK (1987) J Am Ceram Soc 70:C46Google Scholar
  9. 9.
    Chakraborty AK (1993) J Mater Sci 28:3839CrossRefGoogle Scholar
  10. 10.
    Schneider H, Voll D, Saruhan B, Schmucker M (1994) J Eur Ceram Soc 13:441CrossRefGoogle Scholar
  11. 11.
    Chakraborty AK, Das S (2003) Ceram Int 29:27CrossRefGoogle Scholar
  12. 12.
    Chakraborty AK (2004) Br Ceram Trans 103:33CrossRefGoogle Scholar
  13. 13.
    Chakraborty AK (2005) J Am Ceram Soc 88:134CrossRefGoogle Scholar
  14. 14.
    Ivankovic H, Tkalcec E, Nass R, Schmidt H (2003) J Eur Ceram Soc 23:283CrossRefGoogle Scholar
  15. 15.
    Schneider H, Saruhan B, Voll D, Merwin L, Sebald A (1993) J Eur Ceram Soc 11:87CrossRefGoogle Scholar
  16. 16.
    Chakraborty AK (1996) J Therm Anal 46:1413CrossRefGoogle Scholar
  17. 17.
    Iller RK (1964) J Am Ceram Soc 47:339CrossRefGoogle Scholar
  18. 18.
    Yoldas BE (1976) J Mater Sci 11:465CrossRefGoogle Scholar
  19. 19.
    Yoldas BE (1980) Am Ceram Soc Bull 59:479Google Scholar
  20. 20.
    Wakao Y, Hibino T (1962) Nagoya Kogyo Gijutsu Shikensho Hokoku 11:588Google Scholar
  21. 21.
    Saito Y, Takei T, Hayashi S, Yasumori A, Okada K (1998) J Am Ceram Soc 81:2197CrossRefGoogle Scholar
  22. 22.
    Chakraborty AK (2006) Adv Appl Ceram 105:297CrossRefGoogle Scholar
  23. 23.
    Chakraborty AK (submitted) Heating effects of mixed (boehmite–TEOS) and impregnated (γ-Al2O3-TEOS) gels. JSSTGoogle Scholar
  24. 24.
    Bye G, Simpkin GT (1974) J Am Ceram Soc 57:367CrossRefGoogle Scholar
  25. 25.
    Xue LA, Chem IW (1992) J Mater Sci Lett 11:443CrossRefGoogle Scholar
  26. 26.
    Clark PW, White J (1950) Trans Br Ceram Soc 49:305Google Scholar
  27. 27.
    Wei WC, Halloran JW (1988) J Am Ceram Soc 71:166CrossRefGoogle Scholar
  28. 28.
    Li DX, Thomson WJ (1991) J Am Ceram Soc 74:574CrossRefGoogle Scholar
  29. 29.
    Sundarsan S, Aksay IA (1991) J Am Ceram Soc 74:2388CrossRefGoogle Scholar
  30. 30.
    Jaymes I, Douy A, Massiot D, Coutures JP (1996) J Mater Sci 31:4581CrossRefGoogle Scholar
  31. 31.
    Ruscher CH, Schrader G, Gotte M (1996) J Eur Ceram Soc 16:169CrossRefGoogle Scholar
  32. 32.
    Engelhadt G, Michel D (1987) High resolution solid state NMR of silicates and zeolites. Wiley, New YorkGoogle Scholar
  33. 33.
    Sonuparlak B, Sarikaya M, Aksay IA (1987) J Am Ceram Soc 70:837CrossRefGoogle Scholar
  34. 34.
    Gerardin C, Sundaresan S, Benziger J, Navrotsky A (1994) Chem Mater 6:160CrossRefGoogle Scholar
  35. 35.
    Srikrishna K, Thomas G, Martinez R, Corral MP (1990) J Mater Sci 25:607CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.RefractoriesCentral Glass and Ceramic Research InstituteKolkataIndia

Personalised recommendations