Journal of Materials Science

, Volume 43, Issue 23–24, pp 7445–7450 | Cite as

Microstructural investigation of AA 2195 T81 chips formed during a metal-cutting process

  • Lei DongEmail author
  • Judy Schneider
Ultrafine-Grained Materials


In this study, the microstructure of AA 2195 T81 metal-cutting chips formed during a turning operation were characterized using microscopy and diffraction techniques. At a constant strain of 2, the resulting strain rate imposed on the metal was varied from 0.8 × 104 to 2.6 × 105 s−1. At strain rate of 0.8 × 104 s−1, the resulting microstructure contained regions of 100 nm ultrafine grains. At the highest strain rate of 2.6 × 105 s−1, 150–200 nm ultrafine grains were observed plus overaged precipitates. The grain size increment and appearance of overaged precipitates with the higher strain rate is conjectured to be a result of temperature increment and not of direct strain rate.


High Strain Rate Metal Cutting Transmission Electron Microscopy Specimen Shear Band Spacing High Strain Rate Condition 



The authors wish to thank Mr. Curtis Bahr at the NASA-MSFC for fabrication of the test specimens. The authors wish to acknowledge the funding provided by the 2007 NASA Summer Faculty Program #NNM05AA22A and the AFOSR Grant FA9550-07-1-0282.


  1. 1.
    Kaufman JG (2000) Introduction to aluminum alloys and tempers. ASM International, Materials ParkGoogle Scholar
  2. 2.
    Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103. doi: CrossRefGoogle Scholar
  3. 3.
    Matsubara K, Miyahara Y, Horita Z, Langdon TG (2003) Acta Mater 51:3073. doi: CrossRefGoogle Scholar
  4. 4.
    Mishra RS, Valiev RZ, McFadden SX, Mukherjee AK (1998) Mater Sci Eng A 252:174. doi: CrossRefGoogle Scholar
  5. 5.
    Furukawa M, Ma Y, Horita Z, Nemoto M, Valiev RZ, Langdon TG (1998) Mater Sci Eng A 241:122. doi: CrossRefGoogle Scholar
  6. 6.
    Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1997) Acta Mater 45:4733. doi: CrossRefGoogle Scholar
  7. 7.
    Valiev RZ, Alexandrov IV, Zhu YT, Lowe TC (2002) J Mater Res 17:5. doi: CrossRefGoogle Scholar
  8. 8.
    Horita Z, Fujinami T, Nemoto M, Langdon TG (2000) Metall Mater Trans A 31:691. doi: CrossRefGoogle Scholar
  9. 9.
    Kim JK, Kim HK, Park JW, Kim WJ (2005) Scr Mater 53:1207. doi: CrossRefGoogle Scholar
  10. 10.
    Zhao YH, Liao XZ, Jin Z, Valiev RZ, Zhu YT (2004) Acta Mater 52:4589. doi: CrossRefGoogle Scholar
  11. 11.
    Zhao YH, Liao XZ, Zhu YT (2005) J Mater Res 20:288. doi: CrossRefGoogle Scholar
  12. 12.
    Brown TL, Swaminathan S, Chandrasekar S, Compton WD, King AH, Trumble KP (2002) J Mater Res 17:2484. doi: CrossRefGoogle Scholar
  13. 13.
    Swaminathan S, Shankar MR, Lee S, Hwang J, King AH, Kezar RF, Rao BC, Brown TL, Chandrasekar S, Compton WD, Trumble KP (2005) Mater Sci Eng A 410–411:358CrossRefGoogle Scholar
  14. 14.
    Shankar MR, Chandrasekar S, King AH, Compton WD (2005) Acta Mater 53:4781. doi: CrossRefGoogle Scholar
  15. 15.
    Shankar MR, Chandrasekar S, Compton WD, King AH (2005) Mater Sci Eng A 410–411:364. doi: CrossRefGoogle Scholar
  16. 16.
    Swaminathan S, Brown TL, Chandrasekar S, McNelley TR, Compton WD (2007) Scr Mater 56:1047. doi: CrossRefGoogle Scholar
  17. 17.
    Ni H, Elmadagli M, Alpas AT (2004) Mater Sci Eng A 385:267CrossRefGoogle Scholar
  18. 18.
    Ni H, Alpas AT (2003) Mater Sci Eng A 361:338. doi: CrossRefGoogle Scholar
  19. 19.
    Shigematsu I, Suzuki K, Imai T, Kwon YJ, Saito N (2005) J Mater Sci 40:2971. doi: CrossRefGoogle Scholar
  20. 20.
    Schneider JA, Nunes AC Jr (2004) Metall Mater Trans B 35:777. doi: CrossRefGoogle Scholar
  21. 21.
    Schneider JA, Nunes AC Jr, Chen PS, Steele G (2005) J Mater Sci 40:1. doi: CrossRefGoogle Scholar
  22. 22.
    Shaw MC (1984) Metal cutting principles. Oxford University Press, ClarendonGoogle Scholar
  23. 23.
    Schneider K, Heimendahl M (1973) Z Metallkd 64:342Google Scholar
  24. 24.
    International Centre for Diffraction Date (ICDD) PDF22006#00-004-0787Google Scholar
  25. 25.
    Puerta Velásquez JD, Bolle B, Chevrier P, Geandier G, Tidu A (2007) Mater Sci Eng A 452–453:469. doi: CrossRefGoogle Scholar
  26. 26.
    Campbell CE, Bendersky LA, Boettinger WJ, Ivester R (2006) Mater Sci Eng A 430:15. doi: CrossRefGoogle Scholar
  27. 27.
    Elmadagli M, Alpas AT (2003) Mater Sci Eng A 355:249. doi: CrossRefGoogle Scholar
  28. 28.
    Zhang H, Alpas AT (2002) Mater Sci Eng A 332:249. doi: CrossRefGoogle Scholar
  29. 29.
    Gourdet S, Montheillet F (2000) Mater Sci Eng A 283:274. doi: CrossRefGoogle Scholar
  30. 30.
    Duckham A, Engler O, Knutsen RD (2002) Acta Mater 50:815. doi: CrossRefGoogle Scholar
  31. 31.
  32. 32.
    Humphreys FJ (2004) Mater Sci Forum 467–470:107CrossRefGoogle Scholar
  33. 33.
    Chen PS, Bhat BN (2002) NASA/TM 2002-211548Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringMississippi State UniversityMississippi StateUSA

Personalised recommendations