Journal of Materials Science

, Volume 43, Issue 15, pp 5258–5264 | Cite as

Structure and properties of (1 − x)Pb(Mg1/2W1/2)O3xPb(Zr0.5Ti0.5)O3 solid solution ceramics

  • D. White
  • X. Zhao
  • M. F. Besser
  • X. TanEmail author


The widely used piezoelectric Pb(Zr1−xTix)O3 ceramics have been known to have Zr4+ and Ti4+ randomly distributed on the B-site lattice in the ABO3 perovskite structure. In this study, we attempted to develop long range 1:1 B-site cation order by forming the solid solution of (1 − x)Pb(Mg1/2W1/2)O3xPb(Zr0.5Ti0.5)O3 (x ≥ 0.60). High temperature X-ray diffraction tests indicate that the cation order is embedded in the structural order. The solid solution ceramics appear to have a non-cubic paraelectric phase above their Curie temperatures. The competition between the antiferroelectric order in Pb(Mg1/2W1/2)O3 and the ferroelectric order in Pb(Zr0.5Ti0.5)O3 leads to the relaxor ferroelectric behavior in the solid solution. Since the temperature at dielectric maximum, Tm, is significantly above room temperature, regular polarization versus electric field hysteresis loops are recorded in these compositions at room temperature. In addition, these ceramics show very good piezoelectric properties.


Morphotropic Phase Boundary BiScO3 Superlattice Peak Cation Order Dielectric Maximum 



This work was supported by the National Science Foundation through the CAREER grant DMR-0346819.


  1. 1.
    Mitchell RH (2002) Perovskite: modern and ancient. Almaz Press, OntarioGoogle Scholar
  2. 2.
    Smolenskii GA (1970) J Phys Soc Jpn 28(Suppl):26Google Scholar
  3. 3.
    Cross LE (1994) Ferroelectrics 151:305CrossRefGoogle Scholar
  4. 4.
    Chen J, Chan HM, Harmer MP (1989) J Am Ceram Soc 72:593. doi: CrossRefGoogle Scholar
  5. 5.
    Davis PK, Akbas MA (2000) J Phys Chem Solids 61:159. doi: CrossRefGoogle Scholar
  6. 6.
    Zhao XH, Qu WG, He H, Vittayakorn N, Tan X (2006) J Am Ceram Soc 89:202. doi: CrossRefGoogle Scholar
  7. 7.
    Setter N, Cross LE (1980) J Appl Phys 51:4356. doi: CrossRefGoogle Scholar
  8. 8.
    Zaslavskii AI, Bryzhina MF (1963) Sov Phys Crystallogr 7:577Google Scholar
  9. 9.
    Baba-Kishi KZ, Cressey G, Cernik RJ (1992) J Appl Cryst 25:477. doi: CrossRefGoogle Scholar
  10. 10.
    Baldinozzi G, Sciau P, Buffat PA (1993) Solid State Commun 86:541. doi: CrossRefGoogle Scholar
  11. 11.
    Choo WK, Kim HJ, Yang JH, Lim H, Lee JY, Kwon JR et al (1993) Jpn J Appl Phys 32:4249. doi: CrossRefGoogle Scholar
  12. 12.
    Baldinozzi G, Sciau P, Pinot M, Grebille D (1995) Acta Crystallogr B 51:668. doi: CrossRefGoogle Scholar
  13. 13.
    Yasuda N, Fujimoto S, Yoshimura T (1986) J Phys C Solid State Phys 19:1055. doi: CrossRefGoogle Scholar
  14. 14.
    Baldinozzi G, Sciau P, Bulou A (1995) J Phys Condens Matter 7:8109. doi: CrossRefGoogle Scholar
  15. 15.
    Ardelean I, Barbur I, Timar V, Borodi Gh (2003) Mod Phys Lett B 17:1135. doi: CrossRefGoogle Scholar
  16. 16.
    Akbas MA, Davies PK (1997) J Am Ceram Soc 80:2933. doi: CrossRefGoogle Scholar
  17. 17.
    Juhas P, Davies PK (2004) J Am Ceram Soc 87:2086CrossRefGoogle Scholar
  18. 18.
    Jaffe B, Cook WR, Jaffe H (1971) Piezoelectric ceramics. Academic Press, LondonGoogle Scholar
  19. 19.
    Shannon RD (1976) Acta Crystallogr A 32:751. doi: CrossRefGoogle Scholar
  20. 20.
    Uchino K, Nomura S (1982) Ferroelectr Lett 44:55. doi: CrossRefGoogle Scholar
  21. 21.
    Vittayakorn N, Rujijanagul G, Tan X, Marquardt MA, Cann DP (2004) J Appl Phys 96:5103. doi: CrossRefGoogle Scholar
  22. 22.
    Chen IW (2000) J Phys Chem Solids 61:197. doi: CrossRefGoogle Scholar
  23. 23.
    Lu CH (1996) J Mater Sci 31:699. doi: CrossRefGoogle Scholar
  24. 24.
    Stringer CJ, Randall CA (2007) J Am Ceram Soc 90:1802. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringIowa State UniversityAmesUSA
  2. 2.Materials and Engineering Physics ProgramAmes Laboratory, U.S.-DOEAmesUSA

Personalised recommendations