Journal of Materials Science

, Volume 43, Issue 23–24, pp 7360–7365 | Cite as

The development of internal cavitation in a superplastic zinc–aluminum alloy processed by ECAP

  • Megumi KawasakiEmail author
  • Terence G. Langdon
Ultrafine-Grained Materials


A Zn-22% Al eutectoid alloy was processed by Equal-Channel Angular Pressing (ECAP) to produce an ultrafine grain size and then pulled in tension at elevated temperatures to evaluate the role of internal cavitation under superplastic conditions. Tensile testing yielded a highest elongation of 2,230% at a strain rate of 1.0 × 10−2 s−1 at 473 K representing high strain rate superplasticity. Quantitative cavity measurements were taken to investigate the significance of the internal cavities formed during superplastic deformation. The results demonstrate that cavity nucleation occurs continuously throughout superplastic flow, and there is a transition in the cavity growth mechanism from superplastic diffusion growth at the smaller cavity sizes to plasticity-controlled growth at the larger sizes.


Cavitation Cavity Growth Initial Strain Rate Cavity Nucleation Superplastic Flow 



This work was supported by the U.S. Army Research Office under Grant No. W911NF-05-1-0046


  1. 1.
    Langdon TG (1982) Metall Trans 13A:689CrossRefGoogle Scholar
  2. 2.
    Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103. doi: CrossRefGoogle Scholar
  3. 3.
    Valiev RZ, Langdon TG (2006) Prog Mater Sci 51:881. doi: CrossRefGoogle Scholar
  4. 4.
    Ma Y, Furukawa M, Horita Z, Nemoto M, Valiev RZ, Langdon TG (1996) Mater Trans JIM 37:336CrossRefGoogle Scholar
  5. 5.
    Valiev RZ, Salimonenko DA, Tsenev NK, Berbon PB, Langdon TG (1997) Scr Mater 37:1945. doi: CrossRefGoogle Scholar
  6. 6.
    Komura S, Berbon PB, Furukawa M, Horita Z, Nemoto M, Langdon TG (1998) Scr Mater 38:1851. CrossRefGoogle Scholar
  7. 7.
    Furukawa M, Ma Y, Horita Z, Nemoto M, Valiev RZ, Langdon TG (1998) Mater Sci Eng A 241:122. doi: CrossRefGoogle Scholar
  8. 8.
    Kawasaki M, Figueiredo RB, Xu C, Langdon TG (2007) Metall Mater Trans 38A:1891CrossRefGoogle Scholar
  9. 9.
    Kawasaki M, Langdon TG (2007) J Mater Sci 42:1782. doi: CrossRefGoogle Scholar
  10. 10.
    Ishikawa H, Bhat DG, Mohamed FA, Langdon TG (1977) Metall Trans 8A:523CrossRefGoogle Scholar
  11. 11.
    Ahmed MMI, Mohamed FA, Langdon TG (1979) J Mater Sci 14:2913. doi: CrossRefGoogle Scholar
  12. 12.
    Kawasaki M, Kubota K, Higashi K, Langdon TG (2006) Mater Sci Eng A 429:334. doi: CrossRefGoogle Scholar
  13. 13.
    Taplin DMR, Dunlop GI, Langdon TG (1979) Annu Rev Mater Sci 9:151. doi: CrossRefGoogle Scholar
  14. 14.
    Jiang XG, Earthman JC, Mohamed FA (1994) J Mater Sci 29:5499. doi: CrossRefGoogle Scholar
  15. 15.
    Xu C, Lee S, Langdon TG (2001) Mater Sci Forum 357–359:521Google Scholar
  16. 16.
    Park K-T, Myung SH, Shin DH, Lee CS (2004) Mater Sci Eng A 371:178. doi: CrossRefGoogle Scholar
  17. 17.
    Musin F, Kaibyshev R, Motohashi Y, Itoh G (2004) Metall Mater Trans 35A:2383CrossRefGoogle Scholar
  18. 18.
    Musin F, Kaibyshev R, Motohashi Y, Itoh G (2004) Scr Mater 50:511. doi: CrossRefGoogle Scholar
  19. 19.
    Kawasaki M, Huang Y, Xu C, Furukawa M, Horita Z, Langdon TG (2005) Mater Sci Eng A 410–411:402. doi: CrossRefGoogle Scholar
  20. 20.
    Kawasaki M, Xu C, Langdon TG (2005) Acta Mater 53:5353. doi: CrossRefGoogle Scholar
  21. 21.
    Miller DA, Langdon TG (1978) Metall Trans 9A:1688CrossRefGoogle Scholar
  22. 22.
    Miller DA, Langdon TG (1979) Metall Trans 10A:1869CrossRefGoogle Scholar
  23. 23.
    Kawasaki M, Langdon TG (2008) Mater Trans 49:84. doi: CrossRefGoogle Scholar
  24. 24.
    Iwahashi Y, Wang J, Horita Z, Nemoto M, Langdon TG (1996) Scr Mater 35:143. doi: CrossRefGoogle Scholar
  25. 25.
    Furukawa M, Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1998) Mater Sci Eng A 257:328. doi: CrossRefGoogle Scholar
  26. 26.
    Kumar P, Xu C, Langdon TG (2006) Mater Sci Eng A 429:324. doi: CrossRefGoogle Scholar
  27. 27.
    Kumar P, Xu C, Langdon TG (2005) Mater Sci Eng A 410–411:447. doi: CrossRefGoogle Scholar
  28. 28.
    Higashi K, Mabuchi M, Langdon TG (1996) ISIJ Int 36:1423. doi: CrossRefGoogle Scholar
  29. 29.
    Lapovok R (2002) Int J Fract 115:159. doi: CrossRefGoogle Scholar
  30. 30.
    McKenzie PWJ, Lapovok R, Wells P, Raviprasad K (2003) Mater Sci Forum 426–432:297CrossRefGoogle Scholar
  31. 31.
    Ishikawa H, Mohamed FA, Langdon TG (1975) Philos Mag 32:1269. doi: CrossRefGoogle Scholar
  32. 32.
    Park K-T, Yang ST, Earthman JC, Mohamed FA (1994) Mater Sci Eng A 188:59. doi: CrossRefGoogle Scholar
  33. 33.
    Chokshi AH, Langdon TG (1989) Acta Mater 37:715. doi: CrossRefGoogle Scholar
  34. 34.
    Yousefiani A, Earthman JC, Mohamed FA (1998) Acta Mater 46:3557. doi: CrossRefGoogle Scholar
  35. 35.
    Yousefiani A, Mohamed FA (1999) Philos Mag A 79:1247. doi: CrossRefGoogle Scholar
  36. 36.
    Tanaka T, Higashi K (2004) Mater Trans 45:2547. doi: CrossRefGoogle Scholar
  37. 37.
    Park K-T, Hwang D-Y, Chang S-Y, Shin DH (2002) Metall Mater Trans 33A:2859CrossRefGoogle Scholar
  38. 38.
    Park K-T, Hwang D-Y, Lee Y-K, Kim Y-K, Shin DH (2003) Mater Sci Eng A 341:273. doi: CrossRefGoogle Scholar
  39. 39.
    Chokshi AH, Langdon TG (1990) Acta Metall Mater 38:867. doi: CrossRefGoogle Scholar
  40. 40.
    Park K-T, Mohamed FA (1990) Metall Trans 21A:2605CrossRefGoogle Scholar
  41. 41.
    Langdon TG (1994) Acta Metall Mater 42:2437. doi: CrossRefGoogle Scholar
  42. 42.
    Chokshi AH, Langdon TG (1987) Acta Mater 35:1089. doi: CrossRefGoogle Scholar
  43. 43.

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Departments of Aerospace & Mechanical Engineering and Materials ScienceUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Materials Research Group, School of Engineering SciencesUniversity of SouthamptonSouthamptonUK

Personalised recommendations