Journal of Materials Science

, Volume 43, Issue 15, pp 5243–5250 | Cite as

Synthesis of boron nitride nanotubes employing mechanothermal process and its characterization

  • S. K. Singhal
  • A. K. Srivastava
  • R. P. Pant
  • S. K. Halder
  • B. P. Singh
  • Anil K. Gupta


Multi-walled boron nitride (BN) nanotubes having cylindrical structure were synthesized employing the mechanothermal process. In this process hexagonal boron nitride powder (hBN) was first ball milled for 50–100 h using a high-energy ball mill and the ball-milled samples were annealed in N2 atmosphere for about 10 h in the temperature range of 950–1300 °C. The BN nanotubes exhibited a well-crystallized hexagonal structure with about 25–40 nm in diameter and up to 1 μm length. These BN nanotubes were well characterized using various techniques, such as, XRD, SEM, TEM and Raman Spectroscopy.


Ball Milling Boron Nitride Select Area Electron Diffraction Boron Nitride Nanotubes Boron Nitride Powder 



The authors are grateful to the Director, National Physical laboratory, New Delhi, India, for his permission to publish these results. Thanks are also due to Mr. K.N. Sood and Dr. Nita Dilawar for their help in SEM and Raman spectroscopy studies, respectively.


  1. 1.
    Crespi VH, Cohen ML, Rubio A (1997) Phys Rev Lett 79:2093. doi: CrossRefGoogle Scholar
  2. 2.
    Chopra NG, Zettl A (1998) Solid State Commun 105:297. doi: CrossRefGoogle Scholar
  3. 3.
    Chopra NG, Luyken RJ, Cherrey K, Crespi VH, Cohen ML, Louie SG et al (1995) Science 269:966. doi: CrossRefGoogle Scholar
  4. 4.
    Saito Y, Maida M (1999) J Phys Chem A 103:1291. doi: CrossRefGoogle Scholar
  5. 5.
    Bartnitskaya TS, Oleinik GS, Pokropivnyi AV, Pokropivnyi VV (1999) JETP Lett 69:163CrossRefGoogle Scholar
  6. 6.
    Tang CC, De La Chapelle ML, Li P, Liu YM, Dang HY, Fan SS (2001) Chem Phys Lett 342:492. doi: CrossRefGoogle Scholar
  7. 7.
    Deepak FL, Vinod CP, Mukhopadhayay K, Govindaraj A, Rao CNR (2002) Chem Phys Lett 353:345. doi: CrossRefGoogle Scholar
  8. 8.
    Golberg D, Bando Y, Eremets M, Takemura K, Kurashima K, Yusa H (1996) Appl Phys Lett 69:2045. doi: CrossRefGoogle Scholar
  9. 9.
    Laude T, Matsumi Y, Marraud A, Jouffrey B (2000) Appl Phys Lett 76:3239. doi: CrossRefGoogle Scholar
  10. 10.
    Golberg D, Bando Y, Kurashima K, Sato T (2000) Chem Phys Lett 323:185. doi: CrossRefGoogle Scholar
  11. 11.
    Chen Y, Chadderton LT, Gerald JF, Williams JS (1999) Appl Phys Lett 74:2960. doi: CrossRefGoogle Scholar
  12. 12.
    Chen Y, Conway M, Williams JS, Zou J (2002) J Mater Res 17:1896. doi: CrossRefGoogle Scholar
  13. 13.
    Gerald JDF, Chen Y, Conway ML (2003) Appl Phys A 76:107. doi: CrossRefGoogle Scholar
  14. 14.
    Fengqui J, Chaunbao C, Hong X, Ziguang Y (2006) Chin J Chem Engg 14:389. doi: CrossRefGoogle Scholar
  15. 15.
    Yu J, Bill C, Li P, Zou J, Chen Y (2007) J Mater Sci 42:4025. doi: CrossRefGoogle Scholar
  16. 16.
    Bengu E, Marks LD (2001) Phys Rev Lett 86:2385. doi: CrossRefGoogle Scholar
  17. 17.
    Chen Y, Gerald JDF, Chadderton LD, Chaffron L (1999) Appl Phys Lett 74:2782. doi: CrossRefGoogle Scholar
  18. 18.
    Zhi C, Bando Y, Tan C, Golberg D (2005) Solid State Commun 135:67. doi: CrossRefGoogle Scholar
  19. 19.
    Zhang J, Li Z, Xu J (2005) J Mater Sci Tech 21:128Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • S. K. Singhal
    • 1
  • A. K. Srivastava
    • 1
  • R. P. Pant
    • 1
  • S. K. Halder
    • 1
  • B. P. Singh
    • 1
  • Anil K. Gupta
    • 1
  1. 1.National Physical LaboratoryNew DelhiIndia

Personalised recommendations